Skip to main content
Log in

Optimized visually meaningful image embedding strategy based on compressive sensing and 2D DWT-SVD

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents an optimized embedding strategy for visually meaningful embedded image based on compressive sensing (CS), two dimensional discrete wavelet transform (2D DWT) and singular value decomposition (SVD). The embedding strategy consists of four main processes: keys generation; compress the original signal; bit-level image encryption; information hiding. Firstly, the Mahalanobis distance between the original image and the host image is used as the parameter of the SHA-512, and then iterate two chaotic systems with hash values to generate key streams. Then, the components of the plain image are sparsely represented by the optimal direction method, and liner measurement these sparse matrices according to the theory of CS, which can achieve compressing and encrypting simultaneously. Thirdly, the bit-level XOR operation is performed on the compressed sensing image by shuffle and diffusion simultaneously. Finally, decomposing the encrypted image and the carrier image by 2D DWT, and modifying sub-bands of the host image with encrypted sub-bands based on SVD, one can obtain a visually meaningful embedded image, which peak signal-to-noise ratio (PSNR) is 0.08% higher than some traditional optimal algorithms. In particular, the size of the plain image is larger than the host image, which requires stronger embedding capacity. In order to enhance the ability to the defense against plaintext attacks, key streams of two chaotic systems are highly correlated with original images and host images. Moreover, the method of compression and encryption can greatly reduce storage space and process time. Simulation results demonstrate the security and effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ada B, Vp A (2020) Development and analysis of IWT-SVD and DWT-SVD steganography using fractal cover. Journal of King Saud University - Computer and Information Sciences https://doi.org/10.1016/j.jksuci.2020.10.008

  2. Anand A, Singh A K (2020) An improved DWT-SVD domain watermarking for medical information security Comput Commun 152. https://doi.org/10.1016/j.comcom.2020.01.038

  3. Anand A, Singh AK, Lv Z, Bhatnagar G (2020) Compression-then-encryption based secure watermarking technique for smart healthcare system. IEEE Multimed 99:1–143. https://doi.org/10.1109/MMUL.2020.2993269

    Article  Google Scholar 

  4. Bao L, Zhou YC (2015) Image encryption: generating visually meaningful encrypted images. Inf Sci 324:197–207. https://doi.org/10.1016/j.ins.2015.06.049

    Article  MathSciNet  MATH  Google Scholar 

  5. Biggs NL (2008) Cryptography in theory and practice. In: Codes: An Introduction to Information Communication and Cryptography. Springer Undergraduate Mathematics Series. Springer, London. https://doi.org/10.1007/978-1-84800-273-9_12.

  6. Candes EJ (2008) The restricted isometry property and is implications for compressed sensing. CR Math 346(9–10):589–592. https://doi.org/10.1016/j.crma.2008.03.014

    Article  MATH  Google Scholar 

  7. Candes EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509. https://doi.org/10.1109/TIT.2005.862083

    Article  MathSciNet  MATH  Google Scholar 

  8. Chai XL, Gan ZH, Chen YR, Zhang YS (2017) A visually secure image encryption scheme based on compressive sensing. Signal Process 134:35–51. https://doi.org/10.1016/j.sigpro.2016.11.016

    Article  Google Scholar 

  9. Chai XL, Wu HY, Gan ZH (2020) Hiding cipher-images generated by 2-D compressive sensing with a multi-embedding strategy. Signal Process 171:107525. https://doi.org/10.1016/j.sigpro.2020.107525

    Article  Google Scholar 

  10. Chai XL, Wu HY, Gan ZH, Zhang YS, Chen YR, Kent W. Nixon (2020) An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic LSB embedding. Opt Lasers Eng 124:105837. https://doi.org/10.1016/j.optlaseng.2019.105837.

  11. Chai XL, Wu HY, Gan ZH, Han D, Zhang Y, Chen Y (2020) An efficient approach for encrypting double color images into a visually meaningful cipher image using 2D compressive sensing. Inf Sci 556:305–340. https://doi.org/10.1016/j.ins.2020.10.007

    Article  MathSciNet  Google Scholar 

  12. Chang CC, Tsai P, Lin CC (2005) SVD-based digital image watermarking scheme. Pattern Recogn. Lett 26(10):1577–1586. https://doi.org/10.1016/j.patrec.2005.01.004

    Article  Google Scholar 

  13. Chen JX, Zhang Y, Qi L, Fu C, Xu LS (2018) Exploiting chaos-based compressed sensing and cryptographic algorithm for image encryption and compression. Opt Laser Technol 99:238–248. https://doi.org/10.1016/j.optlastec.2017.09.008

    Article  Google Scholar 

  14. Dong CE (2014) Color image encryption using one-time keys and coupled chaotic systems. Signal Process: Image 29(5):628–640. https://doi.org/10.1016/j.image.2013.09.006

    Article  Google Scholar 

  15. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306. https://doi.org/10.1109/TIT.2006.871582

    Article  MathSciNet  MATH  Google Scholar 

  16. Endra RS (2013) Compressive sensing-based image encryption with optimized sensing matrix. In: IEEE international conference on computational intelligence and cybernetics, pp 122–125. https://doi.org/10.1109/CyberneticsCom.2013.6865794

    Chapter  Google Scholar 

  17. Engan K, Aase S O, Husoy J H (1999) Method of optimal directions for frame design. ICASSP99 5:2443-2446. https://doi.org/10.1109/icassp.1999.760624

  18. Ernawan F, Ariatmanto D, Firdaus A (2021) An improved image watermarking by modifying selected DWT-DCT coefficients. IEEE Access 99:1–45485. https://doi.org/10.1109/ACCESS.2021.3067245

    Article  Google Scholar 

  19. Fang H, Vorobyov SA, Jiang H, Taheri O (2014) Permutation meets parallel compressed sensing: how to relax restricted isometry property for 2D sparse signals. IEEE Trans Signal Process 62:196–210. https://doi.org/10.1109/TSP.2013.2284762

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu GQ, Xiao D, Wang Y, Xiang T (2017) An image coding scheme using parallel compressive sensing for simultaneous compression-encryption applications. J Vis Commun Image Represent 44:116–127. https://doi.org/10.1016/j.jvcir.2017.01.022

    Article  Google Scholar 

  21. Identity Theft Resource Center data breach (2018). https://www.experian.com/blogs/ask-experian/identity-theft-statistics/. Accessed 15 March 2021

  22. Ivanna D, Olga F, Natalia K (2020) Constructing of digital watermark based on generalized. Fourier Transform Electronics 9(7):1108. https://doi.org/10.3390/electronics9071108

    Article  Google Scholar 

  23. Jiang FF, Gao TG, Li D (2020) A robust zero-watermarking algorithm for color image based on tensor mode expansion. Multimed Tools Appl 79(1):7599–7614. https://doi.org/10.1007/s11042-019-08459-3

    Article  Google Scholar 

  24. Jiang X, Xiao Y, Xie YY, Liu BC, Ye YC, Song TT, Chai JX, Liu Y (2021) Exploiting optical chaos for double images encryption with compressive sensing and double random phase encoding. Opt Commun 484(1):126683. https://doi.org/10.1016/j.optcom.2020.126683

  25. Kanso A, Ghebleh M (2017) An algorithm for encryption of secret images into meaningful images. Opt Lasers Eng 90:196–208. https://doi.org/10.1016/j.optlaseng.2016.10.009

    Article  Google Scholar 

  26. Li CQ, Lin DD, Lu JH, Hao F (2018) Cryptanalyzing an image encryption algorithm based on autoblocking electrocardiography. IEEE Multimedia 25:46–56. https://doi.org/10.1109/MMUL.2018.2873472

    Article  Google Scholar 

  27. Li YM, Wei D, Zhang L (2020) Double-encrypted watermarking algorithm based on cosine transform and fractional Fourier transform in invariant wavelet domain. Inf Sci 551:205–227. https://doi.org/10.1016/j.ins.2020.11.020

    Article  MathSciNet  Google Scholar 

  28. Lisungu OT, Sumbwanyambe M (2019) A selective image encryption scheme based on 2D DWT, Henon map and 4D Qi hyper-chaos. IEEE Access 99:1–1. https://doi.org/10.1109/ACCESS.2019.2929244

    Article  Google Scholar 

  29. Liu HJ, Kadir A (2015) Asymmetric color image encryption scheme using 2D discrete-time map. Signal process 113(aug.):104-112. https://doi.org/10.1016/j.sigpro.2015.01.016

  30. Liu XY, Cao YP, Lu P, Lu X, Li Y (2013) Optical image encryption technique based on compressed sensing and Arnold transformation. Optik 124(24):6590–6593. https://doi.org/10.1016/j.ijleo.2013.05.092

    Article  Google Scholar 

  31. Mishra A, Agarwal C, Sharma A, Bedi P (2014) Optimized gray-scale image watermarking using DWT-SVD and firefly algorithm. Expert Syst Appl 41(17):7858–7867. https://doi.org/10.1016/j.eswa.2014.06.011

    Article  Google Scholar 

  32. Mohammed EA, Saadon HL (2019) Sparse phase information for secure optical double-image encryption and authentication. Opt Laser Technol 118:13–19. https://doi.org/10.1016/j.optlastec.2019.04.035

    Article  Google Scholar 

  33. Moshtaghpour A, Bioucas-Dias JM, Jacques L (2020) Close encounters of the binary kind: signal reconstruction guarantees for compressive Hadamard sampling with Haar wavelet basis. IEEE Trans Inf Theory 99:1–7273. https://doi.org/10.1109/TIT.2020.2992852

    Article  MathSciNet  MATH  Google Scholar 

  34. Mukherjee I, Paul G, Jawahar JA (2015) Defeating steganography with multibit sterilization using pixel eccentricity. IPSI BgD Internet Research Society 11(1):25–34. https://doi.org/10.1109/GLOCOM.2010.5684216

    Article  Google Scholar 

  35. Ponnaian D, Chandranbabu (2017) Crypt analysis of an image compression-encryption algorithm and a modified scheme using compressive sensing. Opt. - Int. J. Light Electron Opt 147:263–276. https://doi.org/10.1016/j.ijleo.2017.07.063

    Article  Google Scholar 

  36. Pourhashemi SM, Mosleh M, Erfani Y (2020) A novel audio watermarking scheme using ensemble-based watermark detector and discrete wavelet transform. Neural Comput Appl 33(5):6161–6618. https://doi.org/10.1007/s00521-020-05389-2

    Article  Google Scholar 

  37. Ql A, Sy A, Jing LB et al (2020) A discrete wavelet transform and singular value decomposition-based digital video watermark method - ScienceDirect. Appl Math Model 85:273–293. https://doi.org/10.1016/j.apm.2020.04.015

    Article  MathSciNet  Google Scholar 

  38. Rykaczewski R (2017) An SVD-based watermarking scheme for protecting rightful ownership. IEEE Trans Multimedia 9(2):421–423. https://doi.org/10.1109/TMM.2006.886297

    Article  Google Scholar 

  39. Jithin K.C, Sankar S (2020). Colour image encryption algorithm combining, Arnold map, DNA sequence operation, and a Mandelbrot set. J Inf Secur Appl 50:102428. https://doi.org/10.1016/j.jisa.2019.102428.

  40. Singha A, Ullah MA (2020) An image watermarking technique using hybrid signals as watermarks. Multimedia Systems 27(11):1–21. https://doi.org/10.1007/s00530-020-00708-y

    Article  Google Scholar 

  41. Tao Y, Cui W, Zhang Z (2020) Spatiotemporal chaos in multiple dynamically coupled map lattices and its application in a novel image encryption algorithm. Journal of Information Security and Applications 55(1):102650. https://doi.org/10.1016/j.jisa.2020.102650

    Article  Google Scholar 

  42. Thakkar FN, Srivastava VK (2017) A blind medical image watermarking: DWT-SVD based robust and secure approach for telemedicine applications. Multimed Tools Appl 76(3):1–29. https://doi.org/10.1007/s11042-016-3928-7

    Article  Google Scholar 

  43. Uppal R (2020) Quantum and dual-tree complex wavelet transform-based image watermarking. International Journal of Modern Physics B 34(4):20500095. https://doi.org/10.1142/S0217979220500095

    Article  Google Scholar 

  44. Wang XY, Zhang HL (2015) A color image encryption with heterogeneous bit-permutation and correlated chaos. Opt Commun 342:51–61. https://doi.org/10.1016/j.optcom.2014.12.043

    Article  Google Scholar 

  45. Wang XY, Zhao JF (2010) An improved key agreement protocol based on chaos. Commun Nonlinear Sci Numer Simul 15(12):4052–4057. https://doi.org/10.1016/j.cnsns.2010.02.014

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang B, Zhao P (2020) An adaptive image watermarking method combining SVD and Wang-Landau sampling in DWT domain. Mathmatics 8(691). https://doi.org/10.3390/math8050691

  47. Wang XY, Zhao YY, Zhang HL, Guo K (2016) A novel color image encryption scheme using alternate chaotic mapping structure, opt. Lasers Eng 82:79–86. https://doi.org/10.1016/j.optlaseng.2015.12.006

    Article  Google Scholar 

  48. Wang Q, Xiong D, Alfalou A, Brosseau C (2018) Optical image encryption method based on incoherent imaging and polarized light encoding. Opt Commun 415:56–63. https://doi.org/10.1016/j.optcom.2018.01.018

    Article  Google Scholar 

  49. Wu XJ, Wang KS, Wang XY, Kan HB (2017) Lossless chaotic color image cryptosystem based on DNA encryption and entropy. Nonlinear Dyn 90:855–875. https://doi.org/10.1007/s11071-017-3698-4

    Article  MathSciNet  MATH  Google Scholar 

  50. Wu XJ, Wang KS, Wang XY, Kan HB, Kurths J (2018) Color image DNA encryption using NCA map-based CML and one-time keys. Signal process 148(jul.): 272-287. https://doi.org/10.1016/j.sigpro.2018.02.028

  51. Yang JB, Liao XJ, Yuan X, Llull P, Carin L (2014) Compressive sensing by learning a Gaussian mixture model from measurements. IEEE Trans Image Process 24(1):106–119. https://doi.org/10.1109/TIP.2014.2365720

    Article  MathSciNet  MATH  Google Scholar 

  52. Ys A, Chen TA, Min XA et al (2020) A DWT-SVD based adaptive color multi-watermarking scheme for copyright protection using AMEF and PSO-GWO. Expert Syst Appl 168(15):114414. https://doi.org/10.1016/j.eswa.2020.114414

    Article  Google Scholar 

  53. Zear A, Singh PK (2021) Secure and robust color image dual watermarking based on LWT-DCT-SVD. Multimedia Tools and Applications:3. https://doi.org/10.1007/s11042-020-10472-w

  54. Zermi NN, Amine K, Redouane K (2021) A DWT-SVD based robust digital watermarking for medical image security. Forensic Sci Int 320:110691. https://doi.org/10.1016/j.forsciint.2021.110691

    Article  Google Scholar 

  55. Zhou NR, Zhang AD, Zheng F, Gong LH (2014) Novel image compression–encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Opt Laser Technol 62:152–160. https://doi.org/10.1016/j.optlastec.2014.02.015

    Article  Google Scholar 

  56. Zhou Y, Long B, Chen C (2014) A new 1D chaotic system for image encryption. Signal process 97(apr.):172-182. https://doi.org/10.1016/j.sigpro.2013.10.034

  57. Zhou NR, Li HL, Wang D, Pan SM, Zhou ZH (2015) Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Opt Commun 343:10–21. https://doi.org/10.1016/j.optcom.2014.12.084

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science and Technology Major Project of China (Grant No. 2018YFB0204304) and 2021 Tianjin Graduate Scientific Research Innovation Project (Grant No. 2021YJSB012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiegang Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Liu, M., Zhang, Z. et al. Optimized visually meaningful image embedding strategy based on compressive sensing and 2D DWT-SVD. Multimed Tools Appl 81, 20175–20199 (2022). https://doi.org/10.1007/s11042-022-12305-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12305-4

Keywords

Navigation