Skip to main content
Log in

Low complexity block tree coding for hyperspectral image sensors

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Complexity of any onboard hyperspectral image sensor is a challenging issue. The existing hyperspectral image compression algorithm plays a great role in reducing the data transmission bandwidth, data processing time, processing power and coding memory. Many wavelet transform-based set partitioned hyperspectral image compression algorithms are proposed in the past which work with lossy and lossless compression. These compression algorithms use lists or state tables to keep track of significant and insignificant sets or coefficients. The 3D wavelet block tree coding (3D-WBTC) has superior coding performance due to the exploitation of the inter sub-band & intra sub-band redundancy. The 3D-Low-Complexity Block Tree Coding (3D-LCBTC) is a novel implementation of 3D-WBTC which uses two state tables and very small size link lists. The 3D-LCBTC uses depth-first search approach which reduces the complexity of the compression process significantly. Thus, the proposed compression algorithm is a suitable candidate for resources-constrained onboard hyperspectral image sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Achard V, Foucher PY, Dubucq D (2021) Hydrocarbon pollution detection and mapping based on the combination of various hyperspectral imaging processing tools. Remote Sens 13(5):1020. https://doi.org/10.3390/rs13051020

    Article  Google Scholar 

  2. Anand R, Veni S, Aravinth J (2017) Big data challenges in airborne hyperspectral image for urban landuse classification. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI): 1808–1814. https://doi.org/10.1109/ICACCI.2017.8126107

  3. Bairagi VK, Sapkal AM, Gaikwad MS (2013) The role of transforms in image compression. Journal of The Institution of Engineers (India): Series B 94(2):135–140. https://doi.org/10.1007/s40031-013-0049-9

    Article  Google Scholar 

  4. Bajpai S, Singh HV, Kidwai NR (2017) Feature extraction & classification of hyperspectral images using singular spectrum analysis & multinomial logistic regression classifiers. In IEEE International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT) Aligarh, India: 97-100. 10.1109/MSPCT.2017.8363982

  5. Bajpai, Shrish, Harsh Vikram Singh, and Naimur Rahman Kidwai (2019) 3D modified wavelet block tree coding for hyperspectral images. Indonesian Journal of Electrical Engineering and Computer Science (IJEECS) 15 (2): 1001–1008. https://doi.org/10.11591/ijeecs.v15.i2.pp1001-1008

  6. Bajpai S, Kidwai NR, Singh HV (2019) 3D wavelet block tree coding for hyperspectral images. International Journal of Innovative Technology and Exploring Engineering 8(6C):64–68

    Google Scholar 

  7. Bajpai S, Kidwai NR, Singh HV, Singh AK (2019) Low memory block tree coding for hyperspectral images. Multimed Tools Appl 78(19):27193–27209. https://doi.org/10.1007/s11042-019-07797-6

    Article  Google Scholar 

  8. Bajpai, Shrish, Naimur Rahman Kidwai, Vishal Singh Chandel (2020) Low memory wavelet based hyperspectral image coding using 2D Dyadic Wavelet Transform, 11(6): 25–33. https://doi.org/10.34218/IJEET.11.6.2020.003

  9. Bajpai S, Kidwai NR, Singh HV, Singh AK (2022) A low complexity hyperspectral image compression through 3D set partitioned embedded zero block coding. Multimed Tools Appl 81:841–872. https://doi.org/10.1007/s11042-021-11456-0

  10. Báscones D, González C, Mozos D (2020) An FPGA accelerator for real-time lossy compression of hyperspectral images. Remote Sens 12(16):2563. https://doi.org/10.3390/rs12162563

    Article  Google Scholar 

  11. Ben S, Parvathy VS, Laxmi Lydia E, Rani P, Polkowski Z, Shankar K (2020) Optimal deep learning based image compression technique for data transmission on industrial Internet of things applications Transactions on Emerging Telecommunications Technologies, e3976. https://doi.org/10.1002/ett.3976

  12. Bilgin A, Zweig G, Marcellin MW (2000) Three-dimensional image compression with integer wavelet transforms. Appl Opt 39(11):1799–1814. https://doi.org/10.1364/AO.39.001799

    Article  Google Scholar 

  13. Boettcher JB, Du Q, Fowler JE (2007) Hyperspectral image compression with the 3D dual-tree wavelet transform. IEEE International Geoscience and Remote Sensing Symposium: 1033-1036. https://doi.org/10.1109/IGARSS.2007.4422977

  14. Chen Y, Huang TZ, He W, Zhao XL, Zhang H, Zeng J (2021). Hyperspectral image Denoising using factor group sparsity-regularized nonconvex low-rank approximation. IEEE Trans Geosci Remote Sens https://doi.org/10.1109/TGRS.2021.3110769.

  15. Cheng KJ, Dill J (2014) Lossless to lossy dual-tree BEZW compression for hyperspectral images. IEEE Trans Geosci Remote Sens 52(9):5765–5770. https://doi.org/10.1109/TGRS.2013.2292366

    Article  Google Scholar 

  16. Cheng T, Wang B (2021) Decomposition model with background dictionary learning for hyperspectral target detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14:1872–1884. https://doi.org/10.1109/JSTARS.2021.3049843

    Article  Google Scholar 

  17. Christophe E, Mailhes C, Duhamel P (2008) Hyperspectral image compression: adapting SPIHT and EZW to anisotropic 3-D wavelet coding. IEEE Trans Image Process 17(12):2334–2346. https://doi.org/10.1109/TIP.2008.2005824

    Article  MathSciNet  MATH  Google Scholar 

  18. Chutia D, Bhattacharyya DK, Sarma KK, Kalita R, Sudhakar S (2016) Hyperspectral remote sensing classifications: a perspective survey. Trans GIS 20(4):463–490. https://doi.org/10.1111/tgis.12164

    Article  Google Scholar 

  19. Daniel B, González C, Mozos D (2018) Hyperspectral image compression using vector quantization, PCA and JPEG2000. Remote Sens 10(6):907. https://doi.org/10.3390/rs10060907

    Article  Google Scholar 

  20. Das S (2021) Hyperspectral image, video compression using sparse tucker tensor decomposition. IET Image Process 15(4):964–973. https://doi.org/10.1049/ipr2.12077

    Article  Google Scholar 

  21. Datta A, Ghosh S, Ghosh A (2017) Supervised feature extraction of hyperspectral images using partitioned maximum margin criterion. IEEE Geosci Remote Sens Lett 14(1):82–86. https://doi.org/10.1109/LGRS.2016.2628078

    Article  Google Scholar 

  22. Dmitriev EV, Kozoderov VV, Dementyev AO, Safonova AN (2018) Combining classifiers in the problem of thematic processing of hyperspectral aerospace images. Optoelectronics, Instrumentation and Data Processing 54(3):213–221. https://doi.org/10.3103/S8756699018030019

    Article  Google Scholar 

  23. Dragotti PL, Poggi G, Ragozini ARP (2000) Compression of multispectral images by three-dimensional SPIHT algorithm. IEEE Trans Geosci Remote Sens 38(1):416–428. https://doi.org/10.1109/36.823937

    Article  Google Scholar 

  24. Dussarrat P, Theodore B, Coppens D, Standfuss C, Tournier B (2021) Introduction to the ringing effect in satellite hyperspectral atmospheric spectrometry. Atmospheric Measurement Techniques Discussions: 1–12. https://doi.org/10.5194/amt-2021-121

  25. Gnutti A, Guerrini F, Adami N, Migliorati P, Leonardi R (2021) A wavelet filter comparison on multiple datasets for signal compression and denoising. Multidim Syst Sign Process 32(2):791–820. https://doi.org/10.1007/s11045-020-00753-w

    Article  MATH  Google Scholar 

  26. Goetz AF (2009) Three decades of hyperspectral remote sensing of the earth: a personal view. Remote Sens Environ 113(1):S5–S16. https://doi.org/10.1016/j.rse.2007.12.014

    Article  Google Scholar 

  27. Gross W, Queck F, Vögtli M, Schreiner S, Kuester J, Böhler J, Middelmann W (2021) A multi-temporal hyperspectral target detection experiment: evaluation of military setups. In Target and Background Signatures VII 11865:38–48. https://doi.org/10.1117/12.2597991

    Article  Google Scholar 

  28. Hou Y, Liu G (2007) 3D set partitioned embedded zero block coding algorithm for hyperspectral image compression. Remote Sensing and GIS Data Processing and Applications; and Innovative Multispectral Technology and Applications. International Society for Optics and Photonics 6790:679056. https://doi.org/10.1117/12.750975

    Article  Google Scholar 

  29. Hou Y, Liu G (2008). Hyperspectral image lossy-to-lossless compression using the 3D embedded Zeroblock coding alogrithm. International Workshop on Earth Observation and Remote Sensing Applications: 1-6. https://doi.org/10.1109/EORSA.2008.4620308

  30. Hou Y, Liu G (2008) Lossy-to-lossless compression of hyperspectral image using the improved AT-3D SPIHT algorithm. International Conference on Computer Science and Software Engineering 2:963–966. https://doi.org/10.1109/CSSE.2008.1351

    Article  Google Scholar 

  31. Jiang Z, Pan WD, Shen H (2020) Spatially and spectrally concatenated neural networks for efficient lossless compression of hyperspectral imagery. Journal of Imaging 6(6):38. https://doi.org/10.3390/jimaging6060038

    Article  Google Scholar 

  32. Karami A, Yazdi M, Asli, AZ (2010) Hyperspectral image compression based on tucker decomposition and discrete cosine transform. In 2010 2nd international conference on image processing theory, Tools and Applications: 122-125. https://doi.org/10.1109/IPTA.2010.5586739

  33. Kidwai NR, Khan E, Zm-Speck RM (2016) A fast and memoryless image coder for multimedia sensor networks. IEEE Sensors J 16(8):2575–2587. https://doi.org/10.1109/JSEN.2016.2519600

    Article  Google Scholar 

  34. Laureen C, Sacré P-Y, Dispas A, De Bleye C, Fillet M, Ruckebusch C, Hubert P, Ziemons E (2021) Pixel-based Raman hyperspectral identification of complex pharmaceutical formulations. Anal Chim Acta 1155:338361. https://doi.org/10.1016/j.aca.2021.338361

    Article  Google Scholar 

  35. Lee HS, Younan NH, King RL (2002) Hyperspectral image cube compression combining JPEG-2000 and spectral decorrelation. IEEE International Geoscience and Remote Sensing Symposium 6:3317–3319. https://doi.org/10.1109/IGARSS.2002.1027168

    Article  Google Scholar 

  36. Li R, Pan Z, Wang Y (2019) The linear prediction vector quantization for hyperspectral image compression. Multimed Tools Appl 78(9):11701–11718. https://doi.org/10.1007/s11042-018-6724-8

    Article  Google Scholar 

  37. Liu R, Cai W, Li G, Ning X, Jiang Y (2021). Hybrid dilated convolution guided feature filtering and enhancement strategy for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters: 1–5. https://doi.org/10.1109/LGRS.2021.3100407

  38. Liu R, Ning X, Cai W, Li G (2021) Multiscale dense cross-attention mechanism with covariance pooling for hyperspectral image scene classification. Mob Inf Syst 2021:1–15. https://doi.org/10.1155/2021/9962057

    Article  Google Scholar 

  39. Luo Y, Qin J, Xiang X, Tan Y, Liu Q, Xiang L (2020) Coverless real-time image information hiding based on image block matching and dense convolutional network. J Real-Time Image Proc 17(1):125–135. https://doi.org/10.1007/s11554-019-00917-3

    Article  Google Scholar 

  40. Medus LD, Saban M, Francés-Víllora JV, Bataller-Mompeán M, Rosado-Muñoz A (2021) Hyperspectral image classification using CNN: application to industrial food packaging. Food Control 125:107962. https://doi.org/10.1016/j.foodcont.2021.107962

    Article  Google Scholar 

  41. Mishra MK, Gupta A, John J, Shukla BP, Dennison P, Srivastava SS, Kaushik NK, Misra A, Dhar D (2019) Retrieval of atmospheric parameters and data-processing algorithms for AVIRIS-NG Indian campaign data. Current Science 116(7):1089–1100. https://doi.org/10.18520/cs/v116/i7/1089-1100

    Article  Google Scholar 

  42. Mitran T, Sreenivas K, Janakirama Suresh KG, Sujatha G, Ravisankar T (2021) Spatial prediction of calcium carbonate and clay content in soils using airborne hyperspectral data. Journal of the Indian Society of Remote Sensing 49:1–12. https://doi.org/10.1007/s12524-021-01415-5C

    Article  Google Scholar 

  43. Miyoshi GT, Imai NN, Tommaselli AMG, Honkavaara E, Näsi R, Moriya ÉAS (2018) Radiometric block adjustment of hyperspectral image blocks in the Brazilian environment. Int J Remote Sens 39(15–16):4910–4930. https://doi.org/10.1080/01431161.2018.1425570

    Article  Google Scholar 

  44. Mohan BK, Porwal A (2015) Hyperspectral image processing and analysis. Curr Sci 108(5):833–841

    Google Scholar 

  45. Morales A, Ferrer MA, Diaz-Cabrera M, Carmona C, Thomas GL (2014). The use of hyperspectral analysis for ink identification in handwritten documents. In 2014 International Carnahan Conference on Security Technology: 1-5. https://doi.org/10.1109/CCST.2014.6986980

  46. Munmun B, Kumar SA, Praise SD (2021) Two-level band selection framework for hyperspectral image classification. Journal of the Indian Society of Remote Sensing 49(4):843–856. https://doi.org/10.1007/s12524-020-01262-w

    Article  Google Scholar 

  47. Nadia Z, Lahdir M, Helbert D (2019) Support vector regressionbased 3D-wavelet texture learning for hyperspectral image compression. Vis Comput 36(7):1473–1490. https://doi.org/10.1007/s00371-019-01753-z

    Article  Google Scholar 

  48. Nagendran R, Vasuki A (2020) Hyperspectral image compression using hybrid transform with different wavelet-based transform coding. Int J Wavelets Multiresolut Inf Process 18(01):1941008. https://doi.org/10.1142/S021969131941008X

    Article  MathSciNet  Google Scholar 

  49. Ngadiran R, Boussakta S, Sharif B, Bouridane A (2010) Efficient implementation of 3D listless SPECK. IEEE international conference on computer and communication engineering, 1–4. https://doi.org/10.1109/ICCCE.2010.5556843

  50. Paul A, Kundu A, Chaki N, Dutta D, Jha CS (2021). Wavelet enabled convolutional autoencoder based deep neural network for hyperspectral image denoising. Multimedia tools and applications: 1-27. https://doi.org/10.1007/s11042-021-11689-z

  51. Penna B, Tillo T, Magli E, Olmo G (2006). A new low complexity KLT for lossy hyperspectral data compression. In 2006 IEEE International Symposium on Geoscience and Remote Sensing: 3525-3528. https://doi.org/10.1109/IGARSS.2006.904

  52. Penna B, Tillo T, Magli E, Olmo G (2007) Transform coding techniques for lossy hyperspectral data compression. IEEE Trans Geosci Remote Sens 45(5):1408–1421. https://doi.org/10.1109/TGRS.2007.894565

    Article  Google Scholar 

  53. Plaza A, Benediktsson JA, Boardman JW, Brazile J, Bruzzone L, Camps-Valls G, Chanussot J, Fauvel M, Gamba P, Gualtieri A, Marconcini M (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113:S110–S122. https://doi.org/10.1016/j.rse.2007.07.028

    Article  Google Scholar 

  54. Raikwar SC, Tapaswi S, Chakraborty S (2021) Bounding function for fast computation of transmission in single image dehazing. Multimed Tools Appl 81:1–24. https://doi.org/10.1007/s11042-021-11752-9

    Article  Google Scholar 

  55. Ramakrishnan D, Bharti R (2015) Hyperspectral remote sensing and geological applications. Curr Sci 108(5):879–891

    Google Scholar 

  56. Ren W, Zhang J, Ma L, Pan J, Cao X, Zuo W, Liu W, Yang MH (2018). Deep non-blind deconvolution via generalized low-rank approximation. Advances in neural information processing systems: 297-307

  57. Ren W, Pan J, Zhang H, Cao X, Yang MH (2020) Single image dehazing via multi-scale convolutional neural networks with holistic edges. Int J Comput Vis 128(1):240–259. https://doi.org/10.1007/s11263-019-01235-8

    Article  Google Scholar 

  58. Rupali B (2018) Enhanced encrypted reversible data hiding algorithm with minimum distortion through homomorphic encryption. Journal of Electronic Imaging 27(2):023017. https://doi.org/10.1117/1.JEI.27.2.023017

    Article  Google Scholar 

  59. Rupali B (2021) An improved reversible and secure patient data hiding algorithm for telemedicine applications. J Ambient Intell Humaniz Comput 12(2):2915–2929. https://doi.org/10.1007/s12652-020-02449-2

    Article  Google Scholar 

  60. Saha S, Kondmann L, Zhu XX (2021) Deep no learning approach for unsupervised change detection in hyperspectral images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 3:311–316. https://doi.org/10.5194/isprs-annals-V-3-2021-311-2021

    Article  Google Scholar 

  61. Sahoo RN, Ray SS, Manjunath KR (2015) Hyperspectral remote sensing of agriculture. Curr Sci 108(5):848–859

    Google Scholar 

  62. Sharma D, Prajapati YK, Tripathi R (2018) Spectrally efficient 1.55 Tb/s Nyquist- WDM superchannel with mixed line rate approach using 27.75 Gbaud PM-QPSK and PM-16QAM. Optical Engineering 57(7):076102. https://doi.org/10.1117/1.OE.57.7.076102

    Article  Google Scholar 

  63. Sharma D, Prajapati YK, Tripathi R (2018) Success journey of coherent PM-QPSK technique with its variants: a survey. IETE Tech Rev 37(1):36–55. https://doi.org/10.1080/02564602.2018.1557569

    Article  Google Scholar 

  64. Subrahmanyam KV, Kumar KK, Reddy NN (2019) New insights into the convective system characteristics over the Indian summer monsoon region using space-based passive and active remote sensing techniques. IETE Tech Rev 37(2):211–219. https://doi.org/10.1080/02564602.2019.1593890

    Article  Google Scholar 

  65. Sudha VK, Sudhakar R (2013) 3D listless embedded block coding algorithm for compression of volumetric medical images. J Sci Ind Res 72:735–748

    Google Scholar 

  66. Suresh KR, Manimegalai P (2019) Near lossless image compression using parallel fractal texture identification. Biomedical Signal Processing and Control 58:101862. https://doi.org/10.1016/j.bspc.2020.101862

    Article  Google Scholar 

  67. Tang X, Pearlman WA (2004) Lossy-to-lossless block-based compression of hyperspectral volumetric data. IEEE International Conference on Image Processing, Singapore 5:3283–3286. https://doi.org/10.1109/ICIP.2004.1421815

    Article  Google Scholar 

  68. Tang X, Pearlman WA (2006) Three-dimensional wavelet-based compression of hyperspectral images. In hyperspectral data compression springer, Boston, MA: 273-308. https://doi.org/10.1007/0-387-28600-4_10

  69. Tausif M, Kidwai NR, Khan E, Reisslein M, FrWF-based LMBTC (2015) Memory-efficient image coding for visual sensors. IEEE Sensors J 15(11):6218–6228. https://doi.org/10.1109/JSEN.2015.2456332

    Article  Google Scholar 

  70. Uddin MP, Mamun MA, Hossain MA (2021) PCA-based feature reduction for hyperspectral remote sensing image classification. IETE Tech Rev 38(4):377–396. https://doi.org/10.1080/02564602.2020.1740615

    Article  Google Scholar 

  71. UmaMaheswari S, SrinivasaRaghavan V (2021) Lossless medical image compression algorithm using tetrolet transformation. J Ambient Intell Humaniz Comput 12(3):4127–4135. https://doi.org/10.1007/s12652-020-01792-8

    Article  Google Scholar 

  72. Valsesia D, Magli E (2017) Fast and lightweight rate control for onboard predictive coding of hyperspectral images. IEEE Geosci Remote Sens Lett 14(3):394–398. https://doi.org/10.1109/LGRS.2016.2644726

    Article  Google Scholar 

  73. Vura S, Patil P, Patil SB (2021) A study of different compression algorithms for multispectral images. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.06.175

  74. Wang X, Tao J, Shen Y, Qin M, Song C (2018) Distributed source coding of hyperspectral images based on three-dimensional wavelet. J Indian Soc Remote Sens 46(4):667–673. https://doi.org/10.1007/s12524-017-0735-1

    Article  Google Scholar 

  75. Wei P, Yi Zou, Lu AO (2008). A compression algorithm of hyperspectral remote sensing image based on 3-D wavelet transform and fractal. 3rd International Conference on Intelligent System and Knowledge Engineering 1: 1237–1241. https://doi.org/10.1109/ISKE.2008.4731119

  76. Wildenstein D, George AD (2021). Towards intelligent compression of hyperspectral imagery. In 2021 IEEE international conference on electronics, Computing and Communication Technologies: 1-6. 10.1/CONECCT52877.2021.9622585

  77. Wu J, Wu Z, Wu C (2006) Lossy to lossless compressions of hyperspectral images using three-dimensional set partitioning algorithm. Opt Eng 45(2):027005. https://doi.org/10.1117/1.2173996

    Article  MathSciNet  Google Scholar 

  78. Yaman D, Kumar V, Singh RS (2020) Comprehensive review of hyperspectral image compression algorithms. Opt Eng 59(9):090902. https://doi.org/10.1117/1.OE.59.9.090902

    Article  Google Scholar 

  79. Yaman D, Kumar V, Singh RS (2021) Parallel lossless HSI compression based on RLS filter. Journal of Parallel and Distributed Computing 150:60–68. https://doi.org/10.1016/j.jpdc.2020.12.004

    Article  Google Scholar 

  80. Yaman D, Singh RS, Parwani K, Lunagariya S, Kumar V (2021) Convolution neural network based lossy compression of hyperspectral images. Signal Process Image Commun 95:116255. https://doi.org/10.1016/j.image.2021.116255

    Article  Google Scholar 

  81. Zhang L, Zhang L, Tao D, Huang X, Du B (2015) Compression of hyperspectral remote sensing images by tensor approach. Neurocomputing 147:358–363. https://doi.org/10.1016/j.neucom.2014.06.052

    Article  Google Scholar 

Download references

Acknowledgements

I am sincerely thankful to the anonymous reviewers for their critical comments and suggestions to improve the quality of the paper.

Funding

The author received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrish Bajpai.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpai, S. Low complexity block tree coding for hyperspectral image sensors. Multimed Tools Appl 81, 33205–33232 (2022). https://doi.org/10.1007/s11042-022-13057-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13057-x

Keywords

Navigation