Skip to main content
Log in

The photothermal interaction of a semiconducting solid sphere based on three Green-Naghdi theories due to the fractional-order strain and ramp-type heating

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The present article deals with a new mathematical model of a thermoelastic semiconducting solid sphere based on the Green-Naghdi theories (type-I, type-II, and type-III) to study the photothermal interaction. The fractional-order strain consideration has been applied. The bounding surface of the sphere has been thermally loaded by ramp-type heating. Laplace’s transform has been carried out, and its inversions have been computed numerically using the Tzou method. The numerical results have been presented in figures with various values of the fractional order and ramp-time heat parameters. The fractional-order and ramp-time heat parameters significantly affect all the studied functions. The ramp-time heat parameter could be used to tune the thermomechanical energy among the interaction of the thermoelastic body due to thermal loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

\(C_{E}\) :

Specific heat at constant strain

\(c_{o}\) :

\(= \sqrt{\frac{\lambda + 2 \mu }{\rho }} \) Longitudinal wave speed

\(D\) :

The mechanical damage variable parameter

\(D_{e}\) :

The coefficient of carrier diffusion

\(E_{g}\) :

The energy gap of the semiconductor

\(e_{ij}\) :

The strain components

\(K\) :

Thermal conductivity

\(K^{*}\) :

The characteristic constant of the Green-Naghdi model

\(k_{0}\) :

\(= \frac{\partial n_{0}}{\partial T}\) is the coupling parameter of thermal activation

\(F_{i}\) :

The body force components

\(S_{r}\) :

The speed of recombination on the surface

\(T\) :

The absolute temperature

\(T_{o}\) :

Reference temperature

\(t\) :

Time

\(u_{ij}\) :

The displacement components

\(\alpha _{n}\) :

Coefficient of linear electronic deformation

\(\alpha _{\mathrm{t}}\) :

Coefficient of linear thermal expansion

\(\beta\) :

\(= \left ( \frac{\lambda + 2\mu }{\mu } \right )^{1 / 2}\)

\(\gamma _{t}\) :

\(= \left ( 3\lambda + 2\mu \right )\alpha _{T}\)

\(\gamma _{n}\) :

\(= \left ( 3\lambda + 2\mu \right )\alpha _{n}\)

η :

\(= \frac{\rho C_{E}}{K_{1}}\) The thermal viscosity

\(\lambda , \mu \) :

Lamé’s constants

\(\theta\) :

\(= \left ( T - T_{0} \right )\) Temperature increment

\(\rho \) :

Density

\(\sigma _{ij}\) :

Components of the stress tensor

\(\tau \) :

The lifetime of a photogenerated carrier

\(\tau _{0}\) :

The mechanical relaxation time

References

  • Abbas, I.A., Hobiny, A.: Photo-thermal-elastic interaction in an unbounded semiconducting medium with spherical cavity due to pulse heat flux. Waves Random Complex Media 28(4), 670–682 (2018)

    MathSciNet  MATH  Google Scholar 

  • Alzahrani, F.S., Abbas, I.A.: Photo-thermo-elastic interactions without energy dissipation in a semiconductor half-space. Results Phys. 15, 102805 (2019)

    Google Scholar 

  • Alzahrani, F.S., Abbas, I.A.: Photo-thermal interactions in a semiconducting media with a spherical cavity under hyperbolic two-temperature model. Mathematics 8(4), 585 (2020)

    Google Scholar 

  • Andersson, E.: Laser-Induced Fluorescence for Medical Diagnostics (1989)

    Google Scholar 

  • Atwa, S.Y.: Generalized magneto-thermoelasticity with two temperature and initial stress under Green–Naghdi theory. Appl. Math. Model. 38(21–22), 5217–5230 (2014)

    MathSciNet  MATH  Google Scholar 

  • Chen, Z., Akbarzadeh, A.: Advanced Thermal Stress Analysis of Smart Materials and Structures. Springer, Berlin (2020)

    Google Scholar 

  • Ezzat, M.A., Youssef, H.M.: Two-temperature theory in three-dimensional problem for thermoelastic half space subjected to ramp type heating. Mech. Adv. Mat. Struct. 21(4), 293–304 (2014)

    Google Scholar 

  • Faghih, A., Mokhtary, P.: A new fractional collocation method for a system of multi-order fractional differential equations with variable coefficients. J. Comput. Appl. Math. 383, 113139 (2021)

    MathSciNet  MATH  Google Scholar 

  • Gordon, J., Leite, R., Moore, R.S., Porto, S., Whinnery, J.: Long-transient effects in lasers with inserted liquid samples. J. Appl. Phys. 36(1), 3–8 (1965)

    Google Scholar 

  • Green, A., Naghdi, P.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    MathSciNet  MATH  Google Scholar 

  • Hobiny, A.: Effect of the hyperbolic two-temperature model without energy dissipation on photo-thermal interaction in a semi-conducting medium. Results Phys. 18, 103167 (2020)

    Google Scholar 

  • Hobiny, A.D., Abbas, I.A.: A study on photothermal waves in an unbounded semiconductor medium with cylindrical cavity. Mech. Time-Depend. Mater. 21(1), 61–72 (2017)

    Google Scholar 

  • Hobiny, A., Abbas, I.: A GN model on photothermal interactions in a two-dimensions semiconductor half space. Results Phys. 15, 102588 (2019a)

    Google Scholar 

  • Hobiny, A., Abbas, I.: Two-temperature photothermal interactions in a semiconducting material with a 3D spherical cavity. Phys. Mesomech. 22(4), 327–332 (2019b)

    Google Scholar 

  • Hobiny, A., Abbas, I.: Fractional order GN model on photo-thermal interaction in a semiconductor plane. Silicon 12, 1957–1964 (2020)

    Google Scholar 

  • Hopcroft, M.A., Nix, W.D., Kenny, T.W.: What is the Young’s modulus of silicon? J. Microelectromech. Syst. 19(2), 229–238 (2010)

    Google Scholar 

  • Kalkal, K.K., Sheokand, S.K., Deswal, S.: Two-dimensional problem of a fiber-reinforced thermo-diffusive half-space with four relaxation times. Mech. Time-Depend. Mater. 23(4), 443–463 (2019)

    Google Scholar 

  • Kreuzer, L.: Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 42(7), 2934–2943 (1971)

    Google Scholar 

  • Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    MATH  Google Scholar 

  • Lotfy, K.: A novel solution of fractional order heat equation for photothermal waves in a semiconductor medium with a spherical cavity. Chaos Solitons Fractals 99, 233–242 (2017)

    MathSciNet  MATH  Google Scholar 

  • Lotfy, K.: Analytical solution of fractional order heat equation under the effects of variable thermal conductivity during photothermal excitation of spherical cavity of semiconductor medium. Waves Random Complex Media 31, 239–254 (2021)

    MathSciNet  MATH  Google Scholar 

  • Lotfy, K., Sarkar, N.: Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature. Mech. Time-Depend. Mater. 21(4), 519–534 (2017)

    Google Scholar 

  • Lotfy, K., Gabr, M., Hassan, W.: A novel photothermal excitation cracked medium in gravitational field with two-temperature and hydrostatic initial stress. Waves Random Complex Media 29(2), 344–367 (2019)

    MATH  Google Scholar 

  • Magin, R.L., Royston, T.J.: Fractional-order elastic models of cartilage: a multi-scale approach. Commun. Nonlinear Sci. Numer. Simul. 15(3), 657–664 (2010)

    MathSciNet  MATH  Google Scholar 

  • Marin, M., Vlase, S., Ellahi, R., Bhatti, M.M.: On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure. Symmetry 11(7), 863 (2019)

    Google Scholar 

  • Marin, M., Öchsner, A., Ellahi, R., Bhatti, M.: A semigroup of contractions in elasticity of porous bodies. Contin. Mech. Thermodyn. 33(5), 2027–2037 (2021)

    MathSciNet  MATH  Google Scholar 

  • Mukhopadhyay, S., Kumar, R.: A study of generalized thermoelastic interactions in an unbounded medium with a spherical cavity. Comput. Math. Appl. 56(9), 2329–2339 (2008)

    MathSciNet  MATH  Google Scholar 

  • Othman, M.I., Atwa, S.Y., Farouk, R.: The effect of diffusion on two-dimensional problem of generalized thermoelasticity with Green–Naghdi theory. Int. Commun. Heat Mass Transf. 36(8), 857–864 (2009)

    Google Scholar 

  • Povstenko, Y.: Fractional Thermoelasticity, vol. 219. Springer, Berlin (2015)

    MATH  Google Scholar 

  • Rezazadeh, M., Tahani, M., Hosseini, S.M.: Thermoelastic damping in a nonlocal nano-beam resonator as NEMS based on the type III of Green–Naghdi theory (with energy dissipation). Int. J. Mech. Sci. 92, 304–311 (2015)

    Google Scholar 

  • Said, S.M.: Influence of gravity on generalized magneto-thermoelastic medium for three-phase-lag model. J. Comput. Appl. Math. 291, 142–157 (2016)

    MathSciNet  MATH  Google Scholar 

  • Sarkar, N., Lahiri, A.: A three-dimensional thermoelastic problem for a half-space without energy dissipation. Int. J. Eng. Sci. 51, 310–325 (2012)

    MathSciNet  MATH  Google Scholar 

  • Schoenberg, M., Censor, D.: Elastic waves in rotating media. Q. Appl. Math. 31(1), 115–125 (1973)

    MATH  Google Scholar 

  • Sharma, S., Sharma, K., Bhargava, R.R.: Effect of viscosity on wave propagation in anisotropic thermoelastic with Green-Naghdi theory type-II and type-III. Mater. Phys. Mech. 16(2), 144–158 (2013)

    Google Scholar 

  • Song, Y., Todorovic, D.M., Cretin, B., Vairac, P.: Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. Int. J. Solids Struct. 47(14–15), 1871–1875 (2010)

    MATH  Google Scholar 

  • Tam, A.: In: Kliger, D.S. (ed.) Ultrasensitive Laser Spectroscopy. Academic Press, New York (1983)

    Google Scholar 

  • Tam, A.C.: Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58(2), 381 (1986)

    Google Scholar 

  • Thibault, J., Bergeron, S., Bonin, H.W.: On finite-difference solutions of the heat equation in spherical coordinates. Numer. Heat Transf., Part A, Appl. 12(4), 457–474 (1987)

    MATH  Google Scholar 

  • Todorović, D., Nikolić, P., Bojičić, A.: Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors. J. Appl. Phys. 85(11), 7716–7726 (1999)

    Google Scholar 

  • Tzou, D.Y.: A unified field approach for heat conduction from macro-to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)

    Google Scholar 

  • Youssef, H.: State-space approach on generalized thermoelasticity for an infinite material with a spherical cavity and variable thermal conductivity subjected to ramp-type heating. Can. Appl. Math. Q. 13, 4 (2005a)

    MathSciNet  Google Scholar 

  • Youssef, H.M.: Dependence of modulus of elasticity and thermal conductivity on reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity. Appl. Math. Mech. 26(4), 470–475 (2005b)

    MATH  Google Scholar 

  • Youssef, H.: Two-temperature generalized thermoelastic infinite medium with cylindrical cavity subjected to different types of thermal loading. WSEAS Trans. Heat Mass Transf. 1(10), 769 (2006)

    Google Scholar 

  • Youssef, H.M.: Theory of generalized thermoelasticity with fractional order strain. J. Vib. Control 22, 3840–3857 (2016)

    MathSciNet  MATH  Google Scholar 

  • Youssef, H.M., Abbas, I.A.: Fractional order generalized thermoelasticity with variable thermal conductivity. J. Vibroeng. 16(8), 4077–4087 (2014)

    Google Scholar 

  • Youssef, H.M., Al-Harby, A.H.: State-space approach of two-temperature generalized thermoelasticity of infinite body with a spherical cavity subjected to different types of thermal loading. Arch. Appl. Mech. 77(9), 675–687 (2007)

    MATH  Google Scholar 

  • Youssef, H.M., El-Bary, A.: Generalized thermoelastic infinite layer subjected to ramp-type thermal and mechanical loading under three theories—state space approach. J. Therm. Stresses 32(12), 1293–1309 (2009)

    Google Scholar 

  • Youssef, H.M., El-Bary, A.: Characterization of the photothermal interaction of a semiconducting solid sphere due to the mechanical damage, ramp-Type heating, and rotation under LS theory. Waves Random Complex Media, 1–26 (2021). https://doi.org/10.1080/17455030.2021.1916124

  • Youssef, H.M., Elsibai, K.A.: On the theory of two-temperature thermoelasticity without energy dissipation of Green–Naghdi model. Appl. Anal. 94(10), 1997–2010 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdy M. Youssef.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, H.M., Al-Lehaibi, E.A.N. The photothermal interaction of a semiconducting solid sphere based on three Green-Naghdi theories due to the fractional-order strain and ramp-type heating. Mech Time-Depend Mater 27, 1237–1256 (2023). https://doi.org/10.1007/s11043-022-09543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-022-09543-2

Keywords

Navigation