Skip to main content
Log in

A geometric theory for 2-D systems including notions of stabilisability

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper we consider the problem of internally and externally stabilising controlled invariant and output-nulling subspaces for two-dimensional (2-D) Fornasini–Marchesini models, via static feedback. A numerically tractable procedure for computing a stabilising feedback matrix is developed via linear matrix inequality techniques. This is subsequently applied to solve, for the first time, various 2-D disturbance decoupling problems subject to a closed-loop stability constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basile G., Marro G. (1969). Controlled and conditioned invariant subspaces in linear system theory. Journal of Optimization Theory and Applications 3(5): 306–315

    Article  MATH  MathSciNet  Google Scholar 

  • Basile G., Marro G. (1982). Self-bounded controlled invariant subspaces: A straightforward approach to constrained controllability. Journal of Optimization Theory and Applications 38(1): 71–81

    Article  MATH  MathSciNet  Google Scholar 

  • Basile G., Marro G. (1992). Controlled and conditioned invariants in linear system theory. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Bliman P.A. (2002). Lyapunov equation for the stability of 2-D systems. Multidimensional Systems and Signal Processing 13: 201–222

    Article  MATH  MathSciNet  Google Scholar 

  • Conte G., Perdon A. (1988). A geometric approach to the theory of 2-D systems. IEEE Transactions on Automatic Control AC-33(10): 946–950

    Article  MATH  MathSciNet  Google Scholar 

  • Conte G., Perdon A., Kaczorek T. (1991). Geometric methods in the theory of singular 2D linear systems. Kybernetika 27(3): 262–270

    MathSciNet  Google Scholar 

  • EbiharaY., Ito Y., Hagiwara T. (2006). Exact stability analysis of 2-D systems using LMIs. IEEE Transactions on Automatic Control AC-51(9): 1509–1513

    Article  Google Scholar 

  • Fornasini E., Marchesini G. (1978). Doubly-indexed dynamical systems: State-space models and structural properties. Mathematical System Theory 12: 59–72

    Article  MATH  MathSciNet  Google Scholar 

  • Fornasini E., Marchesini G. (1980). Stability analysis of 2-D systems. IEEE Transactions on Circuits and Systems CAS-27(12): 1210–1217

    Article  MathSciNet  Google Scholar 

  • Gałkowski K. (1996). The Fornasini–Marchesini and the Roesser models: Algebraic methods for recasting. IEEE Transactions on Automatic Control 41: 107–112

    Article  MATH  Google Scholar 

  • Hu G.D., Liu M. (2005). Simple criteria for stability of two-dimensional linear systems. IEEE Transactions on Signal Processing 53(12): 4720–4723

    Article  MathSciNet  Google Scholar 

  • Kar H., Sigh V. (2003). Stability of 2-D systems described by the Fornasini–Marchesini first model. IEEE Transactions on Signal Processing 51(6): 1675–1676

    Article  MathSciNet  Google Scholar 

  • Karamanciog̃lu, A., & Lewis, F. L. (1990). A geometric approach to 2-D implicit systems. In Proceedings of the 29th Conference on Decision and Control. Honolulu, Hawaii, December 1990.

  • Karamanciog̃lu A., Lewis F.L. (1992). Geometric theory for the singular Roesser model. IEEE Transactions on Automatic Control AC-37(6): 801–806

    Article  MathSciNet  Google Scholar 

  • Leibfritz F. (2001). An LMI-based algorithm for designing suboptimal static \(\mathcal H_2/\mathcal H_{\infty}\) output feedback controllers. SIAM Journal on Control and Optimization 39(6): 1711–1735

    Article  MATH  MathSciNet  Google Scholar 

  • Malabre M. (1982). The model-following problem for linear constant (A, B,C, D) quadruples. IEEE Transactions on Automatic Control AC-27(2): 458–461

    Article  MathSciNet  Google Scholar 

  • Malabre M., Kučera V. (1984). Infinite structure and exact model matching problem: A geometric approach. IEEE Transactions on Automatic Control AC-29(3): 266-268

    Article  Google Scholar 

  • Malabre M., Martínez-García J., Del-Muro-Cuéllar B. (1997). On the fixed poles for disturbance rejection. Automatica 33(6): 1209–1211

    Article  MATH  MathSciNet  Google Scholar 

  • Marro, G., Morbidi, F., & Prattichizzo, D. (2007). H 2-pseudo optimal model following: A geometric approach. In Proceedings of the 3rd IFAC Symposium on System Structure and Control. Foz do Iguaçu, Brasil, October 17–19, 2007.

  • Morse A.S. (1973). Structure and design of linear model following systems. IEEE Transactions on Automatic Control AC-18(4): 346–354

    Article  MathSciNet  Google Scholar 

  • Paraskevopoulos P.N. (1979). Exact model matching for 2D systems via state feedback. Journal of the Franklin Institute 308: 475–486

    Article  MATH  MathSciNet  Google Scholar 

  • Roesser R.P. (1975). A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control AC-20(1): 1–10

    Article  MathSciNet  Google Scholar 

  • Sebek M. (1983). 2-D exact model matching. IEEE Transactions on Automatic Control AC-28(2): 215–217

    Article  Google Scholar 

  • Wonham W.M., Morse A.S. (1970). Decoupling and pole assignment in linear multivariable systems: A geometric approach. SIAM Journal of Control 8(1): 1–18

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou T. (2006). Stability and stability margin for a two-dimensional system. IEEE Transactions on Signal Processing 54(9): 3483–3488

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Ntogramatzidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ntogramatzidis, L., Cantoni, M. & Yang, R. A geometric theory for 2-D systems including notions of stabilisability. Multidim Syst Sign Process 19, 449–475 (2008). https://doi.org/10.1007/s11045-007-0046-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-007-0046-8

Keywords

Navigation