Skip to main content
Log in

Structural investigations of Ge nanoparticles embedded in an amorphous SiO2 matrix

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Transmission electron microscopy and X-ray photoelectron spectroscopy analyses are performed to investigate Ge nanoparticles embedded in an amorphous SiO2 matrix. GeSiO thin films are prepared by two methods, sol–gel and radio frequency magnetron sputtering. After the deposition, the sol–gel films are annealed in either N2 (at 1 atm and 800 °C) or H2 (at 2 atm and 500 °C), and the sputtered films in H2 (at 2 atm and 500 °C), to allow Ge segregation. Amorphous Ge-rich nanoparticles (3–7 nm size) are observed in sol–gel films. Crystalline Ge nanoparticles in the high pressure tetragonal phase (10–50 nm size) are identified in the sputtered films. The size of the nanoparticles increases with Ge concentration in the volume of the film. At the film surface, the Ge concentration is much larger that in the volume for both sol–gel and sputtered films. At the same time, at the film surface, only oxidized Ge is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen LC (1989) Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. J Am Chem Soc 111:9003–9014. doi:10.1021/ja00207a003

    Article  CAS  Google Scholar 

  • Atzrodt V, Wirth T, Lange H (1980) Investigation of NiSi and Pd3Si thin films by AES and XPS. Phys Status Solidi A 62:531–537. doi:10.1002/pssa.2210620222

    Article  CAS  Google Scholar 

  • Basa P, Alagoz AS, Lohner T, Kulakci M, Turan R, Nagy K, Horváth ZsJ (2008) Electrical and ellipsometry study of sputtered SiO2 structures with embedded Ge nanocrystals. Appl Surf Sci 254:3626–3629. doi:10.1016/j.apsusc.2007.10.075

    Article  CAS  Google Scholar 

  • Bearden JA, Burr AF (1967) Reevaluation of X-ray atomic energy levels. Rev Mod Phys 39:125–142. doi:10.1103/RevModPhys.39.125

    Article  CAS  Google Scholar 

  • Brenier R, Urlacher C, Mugnier J, Brunel M (1999) Stress development in amorphous zirconium oxide films prepared by sol–gel processing. Thin Solid Films 338:136–141. doi:10.1016/S0040-6090(98)01092-X

    Article  CAS  Google Scholar 

  • Ciurea ML, Teodorescu VS, Iancu V, Balberg I (2006) Electronic transport in Si–SiO2 nanocomposite films. Chem Phys Lett 423:225–228. doi:10.1016/j.cplett.2006.03.070

    Article  CAS  Google Scholar 

  • Clarke TA, Rizkalla EN (1976) X-ray photoelectron spectroscopy of some silicates. Chem Phys Lett 37:523–526. doi:10.1016/0009-2614(76)85029-4

    Article  CAS  Google Scholar 

  • Conibeer G, Green M, Corkish R, Cho Y, Cho EC, Jiang CW, Fangsuwannarak T, Pink E, Huang YD, Puzzer T, Trupke T, Richards B, Shalav A, Lin KL (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511–512:654–662. doi:10.1016/j.tsf.2005.12.119

    Article  Google Scholar 

  • Das K, NandaGoswami M, Mahapatra R, Kar GS, Dhar A, Acharya HN, Maikap S, Lee J-H, Ray SK (2004) Charge storage and photoluminescence characteristics of silicon oxide embedded Ge nanocrystal trilayer structures. Appl Phys Lett 84:1386–1388. doi:10.1063/1.1646750

    Article  CAS  Google Scholar 

  • Desnica UV, Salamon K, Buljan M, Dubcek P, Radic N, Desnica-Frankovic ID, Siketic Z, Bogdanovic-Radovic I, Ivanda M, Bernstorff S (2008) Formation of Ge-nanocrystals in SiO2 matrix by magnetron sputtering and post-deposition thermal treatment. Superlattices Microstruct 44:323–330. doi:10.1016/j.spmi.2008.01.021

    Article  CAS  Google Scholar 

  • Duguay S, Grob JJ, Slaoui A, Le Gall Y , Amann-Liess M (2005) Structural and electrical properties of Ge nanocrystals embedded in SiO2 by ion implantation and annealing. J Appl Phys 97(104330):1–5. doi:10.1063/1.1909286

    Google Scholar 

  • Gacem K, El Hdiy A, Troyon M, Berbezier I, Szkutnik PD, Karmous A, Ronda A (2007) Memory and Coulomb blockade effects in germanium nanocrystals embedded in amorphous silicon on silicon dioxide. J Appl Phys 102(093704):1–4. doi:10.1063/1.2804013

    Google Scholar 

  • Gao F, Green MA, Conibeer G, Cho EC, Huang YD, Pere-Wurfl I, Flynn C (2008) Fabrication of multilayered Ge nanocrystals by magnetron sputtering and annealing. Nanotechnology 19(455611):1–5. doi:10.1088/0957-4484/19/45/455611

    Google Scholar 

  • Heitmann J, Müller F, Yi LX, Zacharias M, Kovalev D, Eichhorn F (2004) Confinement and migration effects: excitons in Si nanocrystals. Phys Rev B 69(195309):1–7. doi:10.1103/PhysRevB.69.195309

    Google Scholar 

  • Heng CL, Teo NW, Ho V, Tay MS, Lei Y, Choi WK, Chim WK (2003) Effects of rapid thermal annealing time and ambient temperature on the charge storage capability of SiO2/pure Ge/rapid thermal oxide memory structure. Microelectron Eng 66:218–223. doi:10.1016/S0167-9317(03)00050-9

    Article  CAS  Google Scholar 

  • Heng CL, Tjiu WW, Finstad TG (2004) Charge-storage effects in a metal-insulator semiconductor structure containing germanium nano-crystals formed by rapid thermal annealing of an electron-beam evaporated germanium layer. Appl Phys A 78:1181–1186. doi:10.1007/s00339-003-2482-0

    Article  CAS  Google Scholar 

  • Hollinger G (1981) Structures chimique et electronique de l’interface SiO2–Si. Appl Surf Sci 8:318–336. doi:10.1016/0378-5963(81)90126-4

    Article  CAS  Google Scholar 

  • Hong SH, Kim MC, Jeong PS, Choi SH, Kim KJ (2008) Ge-nanodot multilayer nonvolatile memories, Nanotechnology 19(305203):1–4. doi:10.1088/0957-4484/19/30/305203

    Google Scholar 

  • Hüffner S (2003) Photoelectron spectroscopy: principles and applications. Springer-Verlag, Berlin, 3rd revised and enlarged edition, XV, 662 p. 461 illus., Hardcover. ISBN: 978-3-540-41802-3

  • Kanjilal A, Lundsgaard Hansen J, Gaiduk P, Nylandsted Larsen A, Cherkashin N, Claverie A, Normand P, Kapelanakis E, Skarlatos D, Tsoukalas D (2003) Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy. Appl Phys Lett 82:1212–1214. doi:10.1063/1.1555709

    Article  CAS  Google Scholar 

  • Kanoun M, Souifi A, Baron T, Mazen F (2004) Electrical study of Ge-nanocrystal-based metal-oxide-semiconductor structures for p-type nonvolatile memory applications. Appl Phys Lett 84:5079–5081. doi:10.1063/1.1751227

    Article  CAS  Google Scholar 

  • Kerkhof FPJ, Moulijn JA, Heeres A (1978) The XPS spectra of the metathesis catalyst tungsten oxide on silica gel. J Electron Spectrosc Relat Phenom. 14:453–466. doi:10.1016/0368-2048(78)87004-2

  • Kovalev D, Heckler H, Ben-Chorin M, Polisski G, Schwartzkopff M, Koch F (1998) Breakdown of the k-conservation rule in Si nanocrystals. Phys Rev Lett 81:2803–2806. doi:10.1103/PhysRevLett.81.2803

    Article  CAS  Google Scholar 

  • Luca D, Macovei D, Teodorescu CM (2006) Characterization of titania thin films prepared by reactive pulsed-laser ablation. Surf Sci 600:4342–4346. doi:10.1016/j.susc.2006.01.162

    Article  CAS  Google Scholar 

  • Maeda Y (1995) Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism. Phys Rev B 51:1658–1670. doi:10.1103/PhysRevB.51.1658

    Article  CAS  Google Scholar 

  • Maeda Y, Tsukamoto N, Yazawa Y, Kanemitsu Y, Masumoto Y (1991) Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices. Appl Phys Lett 59:3168–3170. doi:10.1063/1.105773

    Article  CAS  Google Scholar 

  • Mardare D, Luca D, Teodorescu CM, Macovei D (2007) On the hydrophilicity of nitrogen-doped TiO2 thin films. Surf Sci 601:4515–4520. doi:10.1016/j.susc.2007.04.156

    Article  CAS  Google Scholar 

  • Morgan WE, Van Wazer JR (1973) Binding energy shifts in the x-ray photoelectron spectra of a series of related Group IVa compounds. J Phys Chem 77:964–969. doi:10.1021/j100626a023

    Article  CAS  Google Scholar 

  • Nguyen TP, Lefrant S (1989) XPS study of SiO thin films and SiO–metal interfaces. J Phys Cond Matter 1:5197–5204. doi:10.1088/0953-8984/1/31/019

    Article  CAS  Google Scholar 

  • NIST X-ray photoelectron spectroscopy database. http://srdata.nist.gov/xps/EngElmSrchQuery.aspx?EType=PE&CSOpt=Retri_ex_dat&Elm=O

  • Nogami M, Abe Y (1994) Sol–gel method for synthesizing visible photoluminescent nanosized Ge-crystal-doped silica glasses. Appl Phys Lett 65:2545–2547. doi:10.1063/1.112630

    Article  CAS  Google Scholar 

  • Nogami M, Abe Y (1997) Sol–gel synthesis of Ge nanocrystals-doped glass and its photoluminescence. J Sol Gel Sci Tehnol 9:139–143. doi:10.1023/A:1026461029767

    CAS  Google Scholar 

  • Nozaki S, Sato S, Rath S, Ono H, Morisaki H (1999) Optical properties of tetragonal germanium nanocrystals deposited by the cluster-beam evaporation technique: light emitting new material for future. Bull Mater Sci 22:377–381. doi:10.1007/BF02749945

    Article  CAS  Google Scholar 

  • Park CJ, Cho KH, Yang W-C, Cho HY, Choi S-H, Elliman RG, Han JH, Kim C (2006) Large capacitance-voltage hysteresis loops in SiO2 films containing Ge nanocrystals produced by ion implantation and annealing. Appl Phys Lett 88(071916):1–3. doi:10.1063/1.2175495

    Google Scholar 

  • Peibst R, Durkop T, Bugiel E, Fissel A, Costina I, Hofmann KR (2009) Driving mechanisms for the formation of nanocrystals by annealing of ultrathin Ge layers in SiO2. Phys Rev B 79(195316):1–13. doi:10.1103/PhysRevB.79.195316

    Google Scholar 

  • Powder Diffraction File. http://www.icdd.com

  • Rodríguez A, Morana B, Sangrador J, Rodríguez T, Kling A, Ortiz MI, Ballesteros C (2009) Formation of Ge nanocrystals and evolution of the oxide matrix in as-deposited and annealed LPCVD SiGeO films. Superlattices Microstruct 45:343–348. doi:10.1016/j.spmi.2008.10.037

    Article  Google Scholar 

  • Shalvoy RB, Fisher GB, Stiles PJ (1977) Bond ionicity and structural stability of some average-valence-five materials studied by x-ray photoemission. Phys Rev B 15:1680–1697. doi:10.1103/PhysRevB.15.1680

    Article  CAS  Google Scholar 

  • Shen JK, Wu XL, Yuan RK, Tang N, Zou JP, Mei YF, Tan C, Bao XM (2000) Enhanced ultraviolet photoluminescence from SiO2/Ge:SiO2/SiO2 sandwiched structure. Appl Phys Lett 77:3134–3136. doi:10.1063/1.1325399

    Article  CAS  Google Scholar 

  • Stoica TF, Gartner M, Teodorescu VS, Stoica T (2007) Ge dots embedded in silicon dioxide using sol–gel deposition. J Optoelectron Adv Mater 9:3271–3274. http://inoe.inoe.ro/joam/index.php?option=magazine&op=view&idu=1004&catid=18

    Google Scholar 

  • Takeoka S, Fujii M, Hayashi S, Yamamoto K (1998) Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices. Phys Rev B 58:7921–7925. doi:10.1103/PhysRevB.58.7921

    Article  CAS  Google Scholar 

  • Teodorescu VS, Blanchin MG (2009) Fast and simple specimen preparation for TEM studies of oxide films deposited on silicon wafers. Microsc Microanal 15:15–19. doi:10.1017/S1431927609090011

    Article  CAS  Google Scholar 

  • Teodorescu CM, Socol G, Negrila C, Luca D, Macovei D (2010) Nanostructured thin layers of vanadium oxides doped with cobalt, prepared by pulsed laser ablation: chemistry, local atomic structure, morphology and magnetism. J Exp Nanosci. doi:10.1080/17458081003671675.

  • Wagner CD, Zatko DA, Raymond RH (1980) Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis. Anal Chem 52:1445–1451. doi:10.1021/ac50059a017

    Article  CAS  Google Scholar 

  • Wagner CD, Davis LE, Zeller MV, Taylor JA, Raymond RM, Gale LH (1981) Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf Interface Anal 3:211–225. doi:10.1002/sia.740030506

    Article  CAS  Google Scholar 

  • Walters RJ, Bourianoff GI, Atwater HA (2005) Field-effect electroluminescence in silicon nanocrystals. Nat Mater 4:143–146. doi:10.1038/nmat1307

    Article  CAS  Google Scholar 

  • Wosylus A, Prots Y, Schnelle W, Hanfland M, Schwarz U (2008) Crystal structure refinements of Ge(tP12), physical properties and pressure-induced phase transformation Ge(tP12) ↔ Ge(tI4). Z Naturforsch B 63b:608–614. http://www.znaturforsch.com/ab/v63b/63b0608.pdf

  • Yang HQ, Wang XJ, Shi HZ, Xie SH, Wang FJ, Gu XX, Yao X (2002) Photoluminescence of Ge nanodots embedded in SiO2 glasses fabricated by a sol–gel method. Appl Phys Lett 81:5144–5146. doi:10.1063/1.1506943

    Article  CAS  Google Scholar 

  • Yang HQ, Yang RL, Wan XQ, Wan WL (2004) Structure and photoluminescence of Ge nanodots with different sizes embedded in SiO2 glasses fabricated by a sol–gel method. J Cryst Growth 261:549–556. doi:10.1016/j.jcrysgro.2003.08.081

    Article  CAS  Google Scholar 

  • Yang HQ, Yao X, Xie SH, Wang XJ, Liu SX, Fang Y, Gu XX, Wang FJ (2005) Structure and photoluminescence of Ge nanodots embedded in SiO2 gel glasses fabricated at different temperatures. Opt Mater 27:725–730. doi:10.1016/j.optmat.2004.09.017

    Article  CAS  Google Scholar 

  • Yang M, Chen TP, Ding L, Wong JI, Liu Y, Zhang WL, Zhang S, Zhu F, Goh WP (2009) Implant energy-dependent enhancement of electroluminescence from Ge-implanted SiO2 thin films. Electrochem Solid State Lett 12:H238–H240. doi:10.1149/1.3118524

    Article  CAS  Google Scholar 

  • Zhang FX, Wang WK (1995) Crystal structure of germanium quenched from the melt under high pressure. Phys Rev B 52:3113–3116. doi:10.1103/PhysRevB.52.3113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported from Project No. 471/2009 (ID 918/2008), Ideas Program, National Research, Development and Innovation Plan 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Lidia Ciurea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stavarache, I., Lepadatu, AM., Gheorghe, N.G. et al. Structural investigations of Ge nanoparticles embedded in an amorphous SiO2 matrix. J Nanopart Res 13, 221–232 (2011). https://doi.org/10.1007/s11051-010-0021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0021-4

Keywords

Navigation