Skip to main content
Log in

Local structure study of vanadium pentoxide 1D-nanostructures

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Vanadium pentoxide (V2O5·nH2O) 1D-nanostructures as nanowires and nanorods have been obtained by decomposition of vanadium peroxide in hydrothermal conditions. Electron microscopy, Raman spectroscopy, and X-ray absorption spectroscopy (XAS) were employed to characterize the morphology and the local structure of as-obtained samples. Scanning transmission electron microscopy (STEM) revealed that the diameter of the nanowires and nanorods were found to be 10–20 and 30–40 nm, respectively. The results demonstrated that a combination of Raman and XAS techniques allowed the accurate characterization of the local structure of V2O5 1D-nanostructures which are related to different morphologies. Analyses of X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra reveals that the local structure of V in the as-obtained samples is similar to the bulk V2O5 (in orthorhombic phase), except for a higher degree of local symmetry within the structure of the VO5 square pyramid. Additionally, the nanostructures prepared by this technique present a single crystalline nature and could emit visible light at room temperature which is related to the local order of V atoms of the studied samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abello L, Husson E, Repelin Y, Lucazeau G (1985) Structural study of gels of V2O5—vibrational spectra of xerogels. J Solid State Chem 56(3):379–389

    Article  CAS  Google Scholar 

  • Avansi W, Ribeiro C, Leite ER, Mastelaro VR (2009) Vanadium pentoxide nanostructures: an effective control of morphology and crystal structure in hydrothermal conditions. Cryst Growth Des 9(8):3626–3631. doi:10.1021/cg900373f

    Article  CAS  Google Scholar 

  • Avansi W, Ribeiro C, Leite ER, Matelaro VR (2010) Growth kinetics of vanadium pentoxide nanostructures under hydrothermal conditions. J Cryst Growth 312:3555–3559

    Google Scholar 

  • Barth S, Hernandez-Ramirez F, Holmes JD, Romano-Rodriguez A (2010) Synthesis and applications of one-dimensional semiconductors. Prog Mater Sci 55 (6):563–627. doi:10.1016/j.pmatsci.2010.02.001

    Google Scholar 

  • Beke S, Giorgio S, Korosi L, Nanai L, Marine W (2008) Structural and optical properties of pulsed laser deposited V2O5 thin films. Thin Solid Films 516(15):4659–4664. doi:10.1016/j.tsf.2007.08.113

    Article  CAS  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    Article  CAS  Google Scholar 

  • Cademartiri L, Ozin GA (2009) Ultrathin nanowires—a materials chemistry perspective. Adv Mater 21(10):1013–1020

    Article  CAS  Google Scholar 

  • Diaz-Guerra C, Piqueras J (2008) Thermal deposition growth and luminescence properties of single-crystalline V2O5 elongated nanostructures. Cryst Growth Des 8(3):1031–1034. doi:10.1021/cg070612w

    Article  CAS  Google Scholar 

  • Gao SK, Chen YZ, Luo HY, Jiang LL, Ye BH, Wei MD, Wei KM (2008) Single-crystal vanadium pentoxide nanowires. J Nanosci Nanotechnol 8(7):3500–3503. doi:10.1166/jnn.2008.137

    Article  CAS  Google Scholar 

  • Giorgetti M, Passerini S, Smyrl WH, Berrettoni M (2000) Evidence of bilayer structure in V2O5 xerogel. Inorg Chem 39(7):1514–1517

    Article  CAS  Google Scholar 

  • Glushenkov AM, Stukachev VI, Hassan MF, Kuvshinov GG, Liu HK, Chen Y (2008) A novel approach for real mass transformation from V2O5 particles to nanorods. Cryst Growth Des 8(10):3661–3665. doi:10.1021/cg800257d

    Article  CAS  Google Scholar 

  • Hu Y, Li ZC, Zhang ZJ, Meng DQ (2009) Effect of magnetic field on the visible light emission of V2O5 nanorods. Appl Phys Lett 94(10). doi:10.1063/1.3095502

  • Leroy CM, Achard MF, Babot O, Steunou N, Masse P, Livage J, Binet L, Brun N, Backov R (2007) Designing nanotextured vanadium oxide-based macroscopic fibers: application as alcoholic sensors. Chem Mater 19:3988–3999. doi:10.1021/cm0711966

    Article  CAS  Google Scholar 

  • Li BX, Xu Y, Rong GX, Jing M, Xie Y (2006) Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities. Nanotechnology 17(10):2560–2566. doi:10.1088/0957-4484/17/10/020

    Article  CAS  Google Scholar 

  • Liu JF, Wang X, Peng Q, Li YD (2005) Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials. Adv Mater 17(6):764. doi:10.1002/adma.200400993

    Google Scholar 

  • Liu JF, Wang X, Peng Q, Li YD (2006) Preparation and gas sensing properties of vanadium oxide nanobelts coated with semiconductor oxides. Sensors Actuators B 115(1):481–487. doi:10.1016/j.snb.2005.10.012

    Article  Google Scholar 

  • Livage J (1991) Vanadium pentoxide gels. Chem Mater 3(4):578–593

    Article  CAS  Google Scholar 

  • Livage J (1998) Synthesis of polyoxovanadates via “chimie douce”. Coord Chem Rev 178:999–1018

    Article  Google Scholar 

  • Longo VM, de Figueiredo AT, de Lazaro S, Gurgel MF, Costa MGS, Paiva-Santos CO, Varela JA, Longo E, Mastelaro VR, De Vicente FS, Hernandes AC, Franco RWA (2008) Structural conditions that leads to photoluminescence emission in SrTiO3: an experimental and theoretical approach. J Appl Phys 104(2). doi:10.1063/1.2956741

  • Mansour AN, Dallek S, Smith PH, Baker WM (2002) Thermogravimetry and X-ray absorption spectroscopy study of heated V2O5·nH(2)O aerogels and ambigels. J Electrochem Soc 149(12):A1589–A1597. doi:10.1149/1.1517284

    Article  CAS  Google Scholar 

  • Mansour AN, Smith PH, Baker WM, Balasubramanian M, McBreen J (2003a) A comparative in situ X-ray absorption spectroscopy study of nanophase V2O5 aerogel and ambigel cathodes. J Electrochem Soc 150(4):A403–A413. doi:10.1149/1.1554911

    Article  CAS  Google Scholar 

  • Mansour AN, Smith PH, Baker WM, Balasubramanian M, McBreen J (2003b) Comparative in situ X-ray absorption spectroscopy study of nanophase V2O5 aerogel and ambigel cathodes (vol 150, pg A403, 2003). J Electrochem Soc 150(6):L13–L13. doi:10.1149/1.1574327

    Article  CAS  Google Scholar 

  • Moreira ML, Paris EC, do Nascimento GS, Longo VM, Sambrano JR, Mastelaro VR, Bernardi MIB, Andres J, Varela JA, Longo E (2009) Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: an experimental and theoretical insight. Acta Mater 57(17):5174–5185. doi:10.1016/j.actamat.2009.07.019

    Article  CAS  Google Scholar 

  • Motta FV, de Figueiredo AT, Longo VM, Mastelaro VR, Freitas AZ, Gomes L, Vieira ND, Longo E, Varela JA (2009) Disorder-dependent photoluminescence in Ba0.8Ca0.2TiO3 at room temperature. J Lumin 129(7):686–690. doi:10.1016/j.jlumin.2009.01.014

    Article  CAS  Google Scholar 

  • Nakajima T, Isobe M, Tsuchiya T, Ueda Y, Manabe T (2010) Photoluminescence property of vanadates M2V2O7 (M: Ba, Sr and Ca). Opt Mater 32(12):1618–1621. doi:10.1016/j.optmat.2010.05.021

    Google Scholar 

  • Niederberger M, Muhr HJ, Krumeich F, Bieri F, Gunther D, Nesper R (2000) Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chem Mater 12(7):1995–2000

    Article  CAS  Google Scholar 

  • Petkov V, Trikalitis PN, Bozin ES, Billinge SJL, Vogt T, Kanatzidis MG (2002) Structure of V2O5·nH(2)O xerogel solved by the atomic pair distribution function technique. J Am Chem Soc 124(34):10157–10162. doi:10.1021/ja026143y

    Article  CAS  Google Scholar 

  • Pinna N, Wild U, Urban J, Schlogl R (2003) Divanadium pentoxide nanorods. Adv Mater 15(4):329–331

    Article  CAS  Google Scholar 

  • Pol VG, Pol SV, Calderon-Moreno JM, Gedanken A (2009) Core-shell vanadium oxide-carbon nanoparticles: synthesis, characterization, and luminescence properties. J Phys Chem C 113(24):10500–10504. doi:10.1021/jp902503w

    Article  CAS  Google Scholar 

  • Ramana CV, Smith RJ, Hussain OM, Massot M, Julien CM (2005) Surface analysis of pulsed laser-deposited V2O5 thin films and their lithium intercalated products studied by Raman spectroscopy. Surf Interface Anal 37(4):406–411. doi:10.1002/sia.2018

    Article  CAS  Google Scholar 

  • Ravel B, Newville M (2005a) ATHENA and ARTEMIS: interactive graphical data analysis using IFEFFIT. Physica Scripta T115:1007–1010

    Article  CAS  Google Scholar 

  • Ravel B, Newville M (2005b) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541. doi:10.1107/s0909049505012719

    Article  CAS  Google Scholar 

  • Serier H, Achard MF, Babot O, Steunou N, Maquet J, Livage J, Leroy CM, Backov R (2006) Designing the width and texture of vanadium oxide macroscopic fibers: towards tuning mechanical properties and alcohol-sensing performance. Adv Funct Mater 16(13):1745–1753. doi:10.1002/adfm.200600044

    Article  CAS  Google Scholar 

  • Souza AG, Ferreira OP, Santos EJG, Mendes J, Alves OL (2004) Raman spectra in vanadate nanotubes revisited. Nano Lett 4(11):2099–2104. doi:10.1021/nl0488477

    Article  Google Scholar 

  • Stizza S, Mancini G, Benfatto M, Natoli CR, Garcia J, Bianconi A (1989) Structure of oriented V2O5 gel studied by polarized X-ray-absorption spectroscopy at the vanadium K edge. Phys Rev B 40(18):12229–12236

    Article  CAS  Google Scholar 

  • Teramura K, Hosokawa T, Ohuchi T, Shishido T, Tanaka T (2008) Photoactivation mechanism of orthovanadate-like (V=O)O-3 species. Chem Phys Lett 460(4–6):478–481. doi:10.1016/j.cplett.2008.06.025

    Article  CAS  Google Scholar 

  • Velazquez JR, Banerjee S (2009) Catalytic growth of single-crystalline V2O5 nanowire arrays. Small 5(9):1025–1029. doi:10.1002/smll.200801278

    Article  CAS  Google Scholar 

  • Wang Y, Cao G (2006) Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem Mater 18(12):2787–2804

    Article  Google Scholar 

  • Wang X, Li Y (2006) Solution-based synthetic strategies for 1-D nanostructures. Inorg Chem 45(19):7522–7534

    Article  CAS  Google Scholar 

  • Wang Y, Takahashi K, Shang HM, Cao GZ (2005) Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays. J Phys Chem B 109(8):3085–3088. doi:10.1021/jp044286w

    Article  CAS  Google Scholar 

  • Wang YQ, Li ZC, Sheng X, Zhang ZJ (2007) Synthesis and optical properties of V2O5 nanorods. J Chem Phys 126(16). doi:10.1063/1.2722746

  • Yan B, Liao L, You YM, Xu XJ, Zheng Z, Shen ZX, Ma J, Tong LM, Yu T (2009) Single-crystalline V2O5 ultralong nanoribbon waveguides. Adv Mater 21(23):2436. doi:10.1002/adma.200803684

    Google Scholar 

  • Zhang SG, Higashimoto S, Yamashita H, Anpo M (1998) Characterization of vanadium oxide/ZSM-5 zeolite catalysts prepared by the solid-state reaction and their photocatalytic reactivity: in situ photoluminescence, XAFS, ESR, FT-IR, and UV-vis investigations. J Phys Chem B 102(29):5590–5594

    Article  CAS  Google Scholar 

  • Zhou B, He DY (2008) Raman spectrum of vanadium pentoxide from density-functional perturbation theory. J Raman Spectrosc 39(10):1475–1481. doi:10.1002/jrs.2025

    Article  CAS  Google Scholar 

  • Zhou GT, Wang XC, Yu JC (2005) Selected-control synthesis of NaV6O15 and Na2V6O16·3H(2)O single-crystalline nanowires. Cryst Growth Des 5(3):969–974. doi:10.1021/cg0496686

    Article  CAS  Google Scholar 

  • Zhou F, Zhao XM, Yuan CG, Li L (2008) Vanadium pentoxide nanowires: hydrothermal synthesis, formation mechanism, and phase control parameters. Cryst Growth Des 8(2):723–727. doi:10.1021/cg060816x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Brazilian research funding agencies FAPESP, CAPES, and CNPq. XAS measurements and HRTEM microscopy facilities were provided by LNLS-Campinas, SP, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Avansi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avansi, W., Maia, L.J.Q., Ribeiro, C. et al. Local structure study of vanadium pentoxide 1D-nanostructures. J Nanopart Res 13, 4937–4946 (2011). https://doi.org/10.1007/s11051-011-0472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0472-2

Keywords

Navigation