Skip to main content

Advertisement

Log in

Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Membrane gas separation technology has been rapidly growing for industrial applications such as air separation, carbon dioxide (CO2) separation from natural gas production, hydrogen separation, etc. Needs for CO2 separation are increasing as carbon capture technology has been recognized as an essential part when combating the global warming issue. Membrane gas separation technology deals with mass transport phenomena through the membrane engineered on a sub-nanoscale controlling transport properties of small gas molecules such as CO2, N2, O2, H2, etc. In this review, we will report on the recent developments in capture technologies utilizing various membranes including nano-engineered thermally rearranged (TR) polymers. TR polymer membranes show high gas permeability as well as good separation properties, especially in CO2 separation processes such as from post-combustion flue gas and natural gas sweetening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allcock HR, Lampe FW, Mark JE (2003) Contemporary polymer science. Pearson Education Inc., Upper Saddle River

    Google Scholar 

  • Ammala A, Hill AJ, Meakin P, Pas SJ, Turney TW (2002) Degradation studies of polyolefins incorporating transparent nanoparticulate zinc oxide UV stabilizers. J Nanopart Res 4:167–174

    Article  CAS  Google Scholar 

  • Anderson CJ, Pas SJ, Arora G, Kentish SE, Hill AJ, Sandler SI, Stevens GW (2008) Effect of pyrolysis temperature and operating temperature on the performance of nanoporous carbon membranes. J Membr Sci 322:19–27

    Article  CAS  Google Scholar 

  • Bae YS, Snurr RQ (2011) Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem Int Ed 50:11586–11596

    Article  CAS  Google Scholar 

  • Baker RW (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411

    Article  CAS  Google Scholar 

  • Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943

    Article  CAS  Google Scholar 

  • Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:4638–4663

    Article  CAS  Google Scholar 

  • Bos A, Pünt I, Strathmann H, Wessling M (2001) Suppression of gas separation membrane plasticization by homogeneous polymer blending. AIChE J 47:1088–1093

    Article  CAS  Google Scholar 

  • Brunetti A, Scura F, Barbieri G, Drioli E (2010) Membrane technologies for CO2 separation. J Membr Sci 359:115–125

    Article  CAS  Google Scholar 

  • Budd PM, McKeown NB, Fritsch D (2006) Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications. Macromol Symp 245–246:403–405

    Article  Google Scholar 

  • Calle M, Lee YM (2011) Thermally rearranged (TR) poly(ether-benzoxazole) membranes for gas separation. Macromolecules 44:1156–1165

    Article  CAS  Google Scholar 

  • Choi JI, Jung CH, Han SH, Park HB, Lee YM (2010) Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity. J Membr Sci 349:358–368

    Article  CAS  Google Scholar 

  • Chu S (2009) Carbon capture and sequestration. Science 325:1599

    Article  CAS  Google Scholar 

  • Clausi DT, Koros WJ (2000) Formation of defect-free polyimide hollow fiber membranes for gas separations. J Membr Sci 167:79–89

    Article  CAS  Google Scholar 

  • Cui L, Qiu W, Paul DR, Koros WJ (2011) Physical aging of 6FDA-based polyimide membranes monitored by gas permeability. Polymer 52:3374–3380

    Article  CAS  Google Scholar 

  • Das M, Koros WJ (2010) Performance of 6FDA–6FpDA polyimide for propylene/propane separations. J Membr Sci 365:399–408

    Article  CAS  Google Scholar 

  • Dasgupta B, Sen SK, Banerjee S (2010) Aminoethylaminopropylisobutyl POSS—polyimide nanocomposite membranes and their gas transport properties. Mater Sci Eng B 168:30–35

    Article  CAS  Google Scholar 

  • Du N, Park HB, Robertson GP, Dal-Cin MM, Visser T, Scoles L, Guiver MD (2011) Polymer nanosieve membranes for CO2-capture applications. Nat Mater 10:372–375

    Article  CAS  Google Scholar 

  • Freeman B, Yampolskii Y, Pinnau I (2006) Materials science of membranes for gas and vapor separation. Wiley, Chichester

    Google Scholar 

  • Gibbins J, Chalmers H (2008) Carbon capture and storage. Energy Policy 36:4317–4322

    Article  Google Scholar 

  • Gramm F, Baerlocher C, McCusker LB, Warrender SJ, Wright PA, Han B, Hong SB, Liu Z, Ohsuna T, Terasaki O (2006) Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 444:79–81

    Article  CAS  Google Scholar 

  • Han SH, Lee JE, Lee KJ, Park HB, Lee YM (2010a) Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. J Membr Sci 357:143–151

    Article  CAS  Google Scholar 

  • Han SH, Misdan N, Kim S, Doherty CM, Hill AJ, Lee YM (2010b) Thermally rearranged (TR) polybenzoxazole: effects of diverse imidization routes on physical properties and gas transport behaviors. Macromolecules 43:7657–7667

    Article  CAS  Google Scholar 

  • Herzog HJ (2001) Peer reviewed: what future for carbon capture and sequestration? Environ Sci Technol 35:148A–153A

    Article  CAS  Google Scholar 

  • Idem R, Wilson M, Tontiwachwuthikul P, Chakma A, Veawab A, Aroonwilas A, Gelowitz D (2005) Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant. Ind Eng Chem Res 45:2414–2420

    Article  Google Scholar 

  • Imai Y, Taoka I, Uno K, Iwakura Y (1965) Polybenzoxazoles and polybenzothiazoles. Die Makromol Chem 83:167–178

    Article  CAS  Google Scholar 

  • Jung CH, Lee JE, Han SH, Park HB, Lee YM (2010) Highly permeable and selective poly(benzoxazole-co-imide) membranes for gas separation. J Membr Sci 350:301–309

    Article  CAS  Google Scholar 

  • Kazama S (2004) In: CO2 separation with molecular gate membrane. GCEP Energy Workshops, Stanford, Palo Alto, CA

  • Kim S, Han SH, Lee YM (2012) Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. J Membr Sci 403–404:169–178

    Article  Google Scholar 

  • Koros WJ, Fleming GK (1993) Membrane-based gas separation. J Membr Sci 83:1–80

    Article  CAS  Google Scholar 

  • Kosuri MR, Koros WJ (2008) Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide-imide polymer, for high-pressure CO2 separations. J Membr Sci 320:65–72

    Article  CAS  Google Scholar 

  • Li Y, Chung T-S (2010) Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal. Int J Hydrogen Energy 35:10560–10568

    Article  CAS  Google Scholar 

  • Lin K-Y, Wang D-M, Lai J-Y (2002) Nonsolvent-Induced gelation and its effect on membrane morphology. Macromolecules 35:6697–6706

    Article  CAS  Google Scholar 

  • Marchant G, White A (2011) An international nanoscience advisory board to improve and harmonize nanotechnology oversight. J Nanopart Res 13:1489–1498

    Article  Google Scholar 

  • McKeown NB, Budd PM (2010) Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43:5163–5176

    Article  CAS  Google Scholar 

  • McKeown NB, Gahnem B, Msayib KJ, Budd PM, Tattershall CE, Mahmood K, Tan S, Book D, Langmi HW, Walton A (2006) Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angew Chem Int Ed 45:1804–1807

    Article  CAS  Google Scholar 

  • Merkel TC, He Z, Pinnau I, Freeman BD, Meakin P, Hill AJ (2003) Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne). Macromolecules 36:6844–6855

    Article  CAS  Google Scholar 

  • Merkel TC, Lin H, Wei X, Baker R (2010) Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci 359:126–139

    Article  CAS  Google Scholar 

  • Mulder M (1996) Basic principles of membrane technology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Van Wagner E, Freeman BD, Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318:254–258

    Article  CAS  Google Scholar 

  • Park HB, Han SH, Jung CH, Lee YM, Hill AJ (2010) Thermally rearranged (TR) polymer membranes for CO2 separation. J Membr Sci 359:11–24

    Article  CAS  Google Scholar 

  • Pham TCT, Kim HS, Yoon KB (2011) Growth of uniformly oriented silica MFI and BEA zeolite films on substrates. Science 334:1533–1538

    Article  CAS  Google Scholar 

  • Pires JCM, Martins FG, Alvim-Ferraz MCM, Simões M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89:1446–1460

    Article  CAS  Google Scholar 

  • Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49

    Article  CAS  Google Scholar 

  • Rao AB, Rubin ES (2002) A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36:4467–4475

    Article  CAS  Google Scholar 

  • Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    Article  CAS  Google Scholar 

  • Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654

    Article  CAS  Google Scholar 

  • Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129

    Article  CAS  Google Scholar 

  • Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) Hydrogen sorption in functionalized metal–organic frameworks. J Am Chem Soc 126:5666–5667

    Article  CAS  Google Scholar 

  • Rowsell JLC, Yaghi OM, Chen B, Ockwig NW, Millward AR, Contreras DS (2005) Cover picture: strategies for hydrogen storage in metal–organic frameworks/high H2 adsorption in a microporous metal–organic framework with open metal sites. Angew Chem Int Ed 44:4647

    Article  Google Scholar 

  • Shin J, Camblor MA, Woo HC, Miller SR, Wright PA, Hong SB (2009) PST-1: a synthetic small-pore zeolite that selectively adsorbs H2. Angew Chem Int Ed 121:6775–6777

    Article  Google Scholar 

  • Staiger CL, Pas SJ, Hill AJ, Cornelius CJ (2008) Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer. Chem Mater 20:2606–2608

    Article  CAS  Google Scholar 

  • Terry FW (2007) Combustion processes for carbon capture. Proc Combust Inst 31:31–47

    Article  Google Scholar 

  • Thomas S, Pinnau I, Du N, Guiver MD (2009) Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1). J Membr Sci 333:125–131

    Article  CAS  Google Scholar 

  • Tin PS, Chung T-S, Liu Y, Wang R (2004) Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide. Carbon 42:3123–3131

    Article  CAS  Google Scholar 

  • Tullos G, Mathias L (1999) Unexpected thermal conversion of hydroxy-containing polyimides to polybenzoxazoles. Polymer 40:3463–3468

    Article  CAS  Google Scholar 

  • Tullos GL, Powers JM, Jeskey SJ, Mathias LJ (1999) Thermal conversion of hydroxy-containing imides to benzoxazoles: polymer and model compound study. Macromolecules 32:3598–3612

    Article  CAS  Google Scholar 

  • Venna SR, Carreon MA (2009) Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc 132:76–78

    Article  Google Scholar 

  • Wang L, Cao Y, Zhou M, Liu Q, Ding X, Yuan Q (2008) Gas transport properties of 6FDA-TMPDA/MOCA copolyimides. Eur Polym J 44:225–232

    Article  CAS  Google Scholar 

  • Zhao L, Riensche E, Menzer R, Blum L, Stolten D (2008) A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture. J Membr Sci 325:284–294

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Korea CCS R&D Center (KCRC), funded by the Ministry of Education, Science and Technology in Korea. YML appreciates support from WCU (World Class University) program, National Research Foundation (NRF) of the Korean Ministry of Science and Technology (No. R31-2008-000-10092-0), which we gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Moo Lee.

Additional information

Special Issue Editors: Mamadou Diallo, Neil Fromer, Myung S. Jhon

This article is part of the Topical Collection on Nanotechnology for Sustainable Development

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Lee, Y.M. Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation. J Nanopart Res 14, 949 (2012). https://doi.org/10.1007/s11051-012-0949-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0949-7

Keywords

Navigation