Skip to main content
Log in

Photoelectron diffraction study of Rh nanoparticles growth on Fe3O4/Pd(111) ultrathin film

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Metallic nanoparticles (NPs) supported on oxides thin films are commonly used as model catalysts for studies of heterogeneous catalysis. Several 4d and 5d metal NPs (for example, Pd, Pt and Au) grown on alumina, ceria and titania have shown strong metal support interaction (SMSI), for instance the encapsulation of the NPs by the oxide. The SMSI plays an important role in catalysis and is very dependent on the support oxide used. The present work investigates the growth mechanism and atomic structure of Rh NPs supported on epitaxial magnetite Fe3O4(111) ultrathin films prepared on Pd(111) using the Molecular Beam Epitaxy (MBE) technique. The iron oxide and the Rh NPs were characterized using X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction and photoelectron diffraction (PED). The combined XPS and PED results indicate that Rh NPs are metallic, cover approximately 20 % of the iron oxide surface and show height distribution ranging 3–5 ML (monolayers) with essentially a bulk fcc structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersson S, Frank M, Sandell A, Giertz A, Brena B, Brühwiler PA, Martensson N, Libuda J, Bäumer M, Freund H-J (1998) CO dissociation characteristics on size-distributed rhodium islands on alumina model substrates. J Chem Phys. doi:10.1063/1.475684

  • Barbieri A, Weiss W, Van Hove MA, Somorjai GA (1994) Magnetite Fe3O4(111): surface structure by LEED crystallography and energetics. Surf Sci. doi:10.1016/0039-6028(94)90832-X

  • Bäumer M, Frank M, Libuda J, Stempel S, Freund H-J (1997) Growth and morphology of Rh deposits on an alumina film under UHV conditions and under the influence of CO. Surf Sci. doi:10.1016/S0039-6028(97)00484-6

  • Belton DN, Schmeig LJ (1988) Effect of Rh particle size on CO desorption from Rh/alumina model catalysts. Surf Sci. doi:10.1016/0039-6028(88)90071-4

  • Brown NF, Barteau MA (1992) Reactions of 1-propanol and propionaldehyde on rhodium(111). Langmuir. doi:10.1021/la00039a021

  • Campbell CT (1997) Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Surf Sci Rep. doi:10.1016/S0167-5729(96)00011-8

  • Chen Y, van Hove MA (1997) MSCD-multiple scattering calculation diffraction package. http://www.icts.hkbu.edu.hk/vanhove/VanHove_files/mscd/mscdpack.html. Accessed 26 Feb 2013

  • Cheng C (2005) Structure and magnetic properties of the Fe3O4(001) surface: Ab initio studies. Phys Rev B. doi:10.1103/PhysRevB.71.052401

  • Datye AK, Kalakkad DS, Yao MH, Smith DJ (1995) Comparison of metal-support Interactions in Pt/TiO2 and Pt/CeO2. J Catal. doi:10.1006/jcat.1995.1196

  • de la Penã OShea VA, Galván MCA, Prats AEP, Campos-Martinb JM, Fierro JLG (2011) Direct evidence of the SMSI decoration effect: the case of Co/TiO2 catalyst. Chem Commun. doi:10.1039/C1CC10318K

  • de Leitenburg C, Trovarelli A (1995) Metal-support interactions in Rh/CeO2, Rh/TiO2, and Rh/Nb2O5 catalysts as inferred from CO2 methanation activity. J Catal. doi:10.1006/jcat.1995.1244

  • Dudin P, Barinov A, Gregoratti L, Scaini D, He YB, Over H, Kiskinova M (2008) MgO-supported rhodium particles and films: size, morphology, and reactivity. J Phys Chem C. doi:10.1021/jp8017953

  • Eerenstein W, Kalev L, Niesen L, Pasltra TTM, Hibma T (2003), Magneto-resistance and superparamagnetism in magnetite films on MgO and MgAl2O4. J Magn Magn Mater. doi:10.1016/S0304-8853(02)01109-5

  • Ertl G, Knözinger H (1997) Handbook of heterogeneous catalysis, Wiley, Weinheim

  • Frank M, Andersson S, Libuda J, Stempel S, Sandell A, Brena B, Giertz A, Brühwiler PA, Bäumer M, Martensson N, Freund H-J (1997) Particle size dependent CO dissociation on alumina-supported Rh: a model study. Chem Phys Lett. doi:10.1016/S0009-2614(97)01114-7

  • Frank M, Kühnemuth R, Bäumer M, Freund H-J (1999) Oxide-supported Rh particle structure probed with carbon monoxide. Surf Sci. doi:10.1016/S0039-6028(99)00281-2

  • Goodman DW(2005) Catalytically active Au on Titania: yet another example of a strong metal support interaction (SMSI)? Catal Lett. doi:10.1007/s10562-004-0768-2

  • Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient pressure X-ray photoelectron spectroscopy. Angewandte Chemie. doi:10.1002/anie.200803574

  • Hanys P, Janecek P, Matolín V, Korotcenkov G, Nehasil V (2006) XPS and TPD study of Rh/SnO2 system–reversible process of substrate oxidation and reduction. Surf Sci. doi:10.1016/j.susc.2006.01.150

  • Henrich VE, Shaikhutdinov SK (2005) Atomic geometry of steps on metal-oxide single crystals. Surf Sci. doi:10.1016/j.susc.2004.10.047

  • Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep. doi:10.1016/S0167-5729(98)00002-8

  • http://www.webelements.com. Accessed 26 Feb 2013

  • Huang W, Ranke W (2006) Autocatalytic partial reduction of FeO(111) and Fe3O4(111) films by atomic hydrogen. Surf Sci. doi:10.1016/j.susc.2005.11.026

  • Jacinto MJ, Kiyohara PK, Masunaga SH, Jardim RF, Rossi LM (2008) Recoverable rhodium nanoparticles: synthesis, characterization and catalytic performance in hydrogenation reactions. App Catal A. doi:10.1016/j.apcata.2007.12.018

  • Ketteler G, Ranke W (2002), Self-assembled periodic Fe3O4 nanostructures in ultrathin FeO(111) films on Ru(0001). Phys Rev B. doi:10.1103/PhysRevB.66.033405

  • Ketteler G, Ranke W (2003) Heteroepitaxial growth and nucleation of iron oxide films on Ru(0001). J Phys Chem B. doi:10.1021/jp027265f

  • Kim S, Qadir K, Jin S, Reddy AS, Seo B, Mun BS, Joo SH, Park JY (2012) Trend of catalytic activity of CO oxidation on Rh and Ru nanoparticles: role of surface oxide. Catal Today. doi:10.1016/j.cattod.2011.09.024

  • Kohl A, Labich S, Taglauer E, Knozinger H (2000) Agglomeration of supported rhodium on model catalysts. Surf Sci. doi:10.1016/S0039-6028(00)00164-3

  • Labich S, Kohl A, Taglauer E, Knozinger H (1998) Silicide formation by high-temperature reaction of Rh with model SiO2 films. J Chem Phys. doi:10.1063/1.476784

  • Labich S, Taglauer E, Knozinger H (2000) Metal-support interactions on rhodium model catalysts. Top Catal. doi:10.1023/A:1009027621119

  • Libuda J, Freund H-J (2005) Molecular beam experiments on model catalysts. Surf Sci Rep. doi:10.1016/j.surfrep.2005.03.002

  • Lopes EL, Abreu GJP, Paniago R, Soares EA, de Carvalho VE, Pfannes H-D (2007) Atomic geometry determination of FeO(0 0 1) grown on Ag(0 0 1) by low energy electron diffraction. Surf Sci. doi:10.1016/j.susc.2006.12.031

  • Majzik Z, Balázs N, Berkó A (2011) Ordered SMSI decoration layer on Rh nanoparticles grown on TiO2(110) surface. J Phys Chem C. doi:10.1021/jp111319n

  • McClure SM, Lundwall M, Yang F, Zhou Z, Goodman DW (2009), CO oxidation on Rh/SiO2/Mo(112) model catalysts at elevated pressures. J Phys Chem C. doi:10.1021/jp808953v

  • Nilius N, Corper A, Bozdech G, Ernst N, Freund H-J (2001) Experiments on individual alumina-supported adatoms and clusters. Prog Surf Sci. doi:10.1016/S0079-6816(01)00018-1

  • Nolte P, Stierle A, Jin-Phillipp NY, Kasper N, Schulli TU, Dosch H (2008) Shape changes of supported Rh nanoparticles during oxidation and reduction cycles. Science. doi:10.1126/science.1160845

  • Park JB, Ratliff JS, Ma S, Chen DA (2007) Understanding the reactivity of oxide-supported bimetallic clusters: reaction of NO with CO on TiO2(110)-supported Pt–Rh clusters. J Phys Chem C. doi:10.1021/jp064333f

  • Pentcheva R, Moritz W, Rundgren J, Frank S, Schrupp D, Scheffler M (2008) A combined DFT/LEED-approach for complex oxide surface structure determination: Fe3O4(001). Surf Sci. doi:10.1016/j.susc.2008.01.006

  • Qin Z-H, Lewandowski M, Sun Y-N, Shaikhutdinov S, Freund H-J (2009) Morphology and CO adsorption on platinum supported on thin Fe3O4(111) films. J Phys Condens Matter. doi:10.1088/0953-8984/21/13/134019

  • Ritter M, Over H, Weiss W (1997) Structure of epitaxial iron oxide films grown on Pt(100) determined by low energy electron diffraction. Surf Sci. doi:10.1016/S0039-6028(96)01010-2

  • Ritter M, Weiss W (1999) Fe3O4(111) surface structure determined by LEED crystallography. Surf Sci. doi:10.1016/S0039-6028(99)00518-X

  • Rupprechter G, Hayek K, Hofmeister HJ (1998) Electron microscopy of thin-film model catalysts: activation of alumina-supported rhodium nanoparticles. J Catal. doi:10.1006/jcat.1997.1917

  • Shaikhutdinov SK, Ritter M, Wang X-G, Over H, Weiss W (1999) Defect structures on epitaxial Fe3O4(111) films. Phys Rev B. doi:10.1103/PhysRevB.60.11062

  • Shchennikov VV, Ovsyannikov SV (2009) Is the verwey transition in Fe3O4 magnetite driven by a peierls distortion?. J of Phys: Cond Matt. doi:10.1088/0953-8984/21/27/271001

  • Tauster SJ, Fung SC (1978) Strong metal-support interactions: occurrence among the binary oxides of groups IIA–VB. J Catal. doi:10.1016/0021-9517(78)90182-3

  • Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am Chem Soc. doi:10.1021/ja00469a029

  • Tsubaki N, Fujimoto K (2003) Promotional SMSI effect on supported palladium catalysts for methanol synthesis. Top Catal. doi:10.1023/A:1023548608733

  • van Delft FCMJM, van Groos MJK, de Graaff RAG, van Langeveld AD, Nieuwenhuys BE (1987) Determination of surface debye temperatures by leed. Surf Sci. doi:10.1016/S0039-6028(87)80502-2

  • Viana ML, Muino DR, Soares EA, Van Hove MA, de Carvalho VE (2007) Global search in photoelectron diffraction structure determination using genetic algorithms. J Phys Condens Matter. doi:10.1088/0953-8984/19/44/446002

  • Wang H-Q, Altman EI, Henrich VE (2006) Steps on Fe3O4(100): STM measurements and theoretical calculations. Phys Rev B. doi:10.1103/PhysRevB.73.235418

  • Weiss W, Ranke W (2002) Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers. Prog Surf Sci. doi:10.1016/S0079-6816(01)00056-9

  • Weiss W, Ritter M (1999) Metal oxide heteroepitaxy: Stranski-Krastanov growth for iron oxides on Pt(111). Phy Rev B. doi:10.1103/PhysRevB.59.5201

  • Zaera F (2012) New challenges in heterogeneous catalysis for the 21st century. Catal Lett. doi:10.1007/s10562-012-0801-9

  • Zhu Y, Schmidt LD (1983) Surface characterization of supported Pt, Rh, and alloy particles by CO chemisorption. Surf Sci. doi:10.1016/0039-6028(83)90097-3

Download references

Acknowledgments

We would like to acknowledge the Brazilian research agencies Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Ciêntífico e Tecnológico (CNPq) for financial support and the Brazilian Sinchrotron Light Source (LNLS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. P. Abreu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abreu, G.J.P., Pancotti, A., de Lima, L.H. et al. Photoelectron diffraction study of Rh nanoparticles growth on Fe3O4/Pd(111) ultrathin film. J Nanopart Res 15, 1510 (2013). https://doi.org/10.1007/s11051-013-1510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1510-z

Keywords

Navigation