Skip to main content
Log in

Nanotubes of piezoelectric BNT–BT0.08 obtained from sol–gel precursor

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Barium titanate-substituted bismuth titanate ((Bi0.5Na0.5)0.92Ba0.08TiO3, BNT–BT0.08) nanotubes were fabricated using sol–gel chemistry, spin casting, and a porous polycarbonate membrane template. The structure and morphology of the tubes have been investigated by scanning electron microscopy and transmission electron microscopy. The diameter and length of these tubes were about 650 nm and 20 μm, respectively, and their wall thickness was about 50 nm. The tubes were polycrystalline with average grain size of ~40 nm. The BNT–BT0.08 nanotubes exhibited ferroelectric behavior as evidenced by saturated piezoresponse hysteresis loops and phase switching. BNT–BT0.08 piezoelectric nanotubes promise novel device architectures and enhanced electric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bousquet M, Duclere JR, Champeaux C, Boulle A, Marchet P, Catherinot A, Wu A, Vilarinho PM, Deputier S, Guilloux-Viry M et al (2010) Macroscopic and nanoscale electrical properties of pulsed laser deposited (100) epitaxial lead-free Na0.5Bi0.5TiO3 thin films. J Appl Phys 107:034102

    Article  Google Scholar 

  • Carbone L, Nobile C, De Giorgi M, Sala FD, Morello G, Pompa P, Hytch M, Snoeck E, Fiore A, Franchini IR et al (2007) Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett 7:2942–2950

    Article  CAS  Google Scholar 

  • Cernea M, Galca AC, Cioangher MC, Dragoi C, Ioncea G (2011) Piezoelectric BNT–BT0.11 thin films processed by sol–gel technique. J Mater Sci 46:5621–5627

    Article  CAS  Google Scholar 

  • Chen M, Xu Q, Kim BH, Ahn BK, Ko JH, Kang WJ, Nam OJ (2008) Structure and electrical properties of (Na0.5Bi0.5)1−x Ba x TiO3 piezoelectric ceramics. J Eur Ceram Soc 28:843–849

    Article  Google Scholar 

  • Chen XM, Pan WY, Tian HH, Gong XX, Bian XB, Liu P (2011) Microstructure, dielectric and ferroelectric properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 (NBTB) and 0.05BiFeO3–0.95NBTB ceramics: effect of sintering atmosphere. J Alloy Compd 509:1824–1829

    Article  CAS  Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292

    Article  CAS  Google Scholar 

  • Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6:557–562

    Article  Google Scholar 

  • Gruverman A, Kholkin A (2006) Nanoscale ferroelectrics: processing, characterization and future trend. Rep Prog Phys 69:2443–2474

    Article  CAS  Google Scholar 

  • Guo Y, Akai D, Sawada K, Ishida M (2008) Dielectric and ferroelectric properties of highly (100)-oriented(Na0.5Bi0.5)0.94Ba0.06TiO3 thin films grown on LaNiO3/γAl2O3/Si substrates by chemical solution deposition. Solid State Sci 10:928–933

    Article  CAS  Google Scholar 

  • Jo W, Daniels JE, Jones J, Tan LX, Thomas PA, Damjanovic D, Rodel J (2011) Evolving morphotropic phase boundary in lead-free Bi1/2Na1/2TiO3–BaTiO3 piezoceramics. J Appl Phys 109:014110

    Article  Google Scholar 

  • Jones GO, Thomas PA (2002) Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr B 58:168–178 Pattern: 01-070-9850

    Article  CAS  Google Scholar 

  • Luo Y, Szafraniak I, Zakharov ND, Nagarajan V, Steinhart M, Wehrspohn RB, Wendorff JH, Ramesh R, Alexe M (2003) Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl Phys Lett 83:440–442

    Article  CAS  Google Scholar 

  • Nagata H, Takenaka T (2001) Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics. J Eur Ceram Soc 21:299–1302

    Article  Google Scholar 

  • Persano A, De Giorgi M, Fiore A, Cingolani R, Manna L, Cola A, Krahne R (2010) Photoconduction properties in aligned assemblies of colloidal CdSe/CdS nanorods. ACS Nano 4:1646–1652

    Article  CAS  Google Scholar 

  • Rizzo A, Nobile C, Mazzeo M, Giorgi MD, Fiore A, Carbone L, Cingolani R, Manna L, Gigli G (2009) Polarized light emitting diode by long-range nanorod self-assembling on a water surface. ACS Nano 3:1506–1512

    Article  CAS  Google Scholar 

  • Rogers ME, Fancher CM, Blendell JE (2012) Domain evolution in lead-free thin film piezoelectric ceramics. J Appl Phys 112:052014

    Article  Google Scholar 

  • Ryan KM, Mastroianni A, Stancil KA, Liu H, Alivisatos AP (2006) Electric-field assisted assembly of perpendicularly oriented nanorod superlattices. Nano Lett 6:1479–1482

    Article  CAS  Google Scholar 

  • Stebe KJ, Lewandowski E, Ghosh M (2009) Oriented assembly of metamaterials. Science 325:159–160

    Article  CAS  Google Scholar 

  • Sun B, Peterson RL, Sirringhaus H, Mori K (2007) Low-temperature sintering of in plane self-assembled ZnO nanorods for solution-processed high-performance thin film transistors. J Phys Chem C 111:18831–18835

    Article  CAS  Google Scholar 

  • Sung YS, Kim JM, Cho JH, Song TK, Kim MH, Park TG (2010) Effects of Na nonstoichiometry in (Bi0.5Na0.5+x )TiO3 ceramics. Appl Phys Lett 96:202901–202903

    Article  Google Scholar 

  • Takenaka T, Sakata K (1989) Dielectric, piezoelectric and pyroelectric properties of (BiNa)1/2TiO3-based ceramics. Ferroelectrics 95:153–156

    Article  CAS  Google Scholar 

  • Takenaka T, Maruyama K, Sakata K (1991) (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. J Appl Phys 3:2236–2239

    Google Scholar 

  • Wang L, Li Y (2006) Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett 6:1645–1649

    Article  Google Scholar 

  • Wang XX, Kwok KW, Tang XG, Chan HLW, Choy CL (2004) Electromechanic properties and dielectric behavior of (Bi0.5Na0.5)(1–1.5 x )Bi x TiO3 lead-free piezoelectric ceramics. Solid State Commun 129:319–323

    Article  CAS  Google Scholar 

  • Wang Y, Wang Z, Xu H, Li D (2009) Properties of (1−x)Bi0.5Na0.5TiO3xSrTiO3 ferroelectric thin films prepared by metalorganic solution deposition. J Alloy Compd 484:230–232

    Article  CAS  Google Scholar 

  • Wang H, Zuo R, Ji X, Xu Z (2010) Effects of ball milling on microstructure and electrical properties of sol–gel derived (Na0.5Bi0.5)0.94Ba0.06TiO3 piezoelectric ceramics. Mater Design 31:4403–4407

    Article  CAS  Google Scholar 

  • Yilmaz H, Messing GL, Trolier-McKinstry S (2003) Reactive templated grain growth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3–BaTiO3) ceramics. II dielectric and piezoelectric properties. J Electroceram 11:207–226

    Article  CAS  Google Scholar 

  • Zhang ST, Kounga AB, Aulbach E, Deng Y (2008) Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J Am Ceram Soc 91:3950–3954

    Article  CAS  Google Scholar 

  • Zhang DZ, Zheng XJ, Feng X, Zhang T, Sun J, Dai SH, Gong LJ, Gong YQ, He L, Zhu Z, Huang J, Xu X (2010a) Ferro-piezoelectric properties of 0.94(Na0.5Bi0.5)TiO3 0.06BaTiO3 thin film prepared by metal–organic decomposition. J Alloy Compd 504:129–133

    Article  CAS  Google Scholar 

  • Zhang H, Jiang S, Kajiyoshi K (2010b) Preparation and characterization of sol–gel derived sodium–potassium bismuth titanate powders and thick films deposited by screen printing. J Alloy Compd 495:173–180

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Romanian Research Ministry “NUCLEU 45N”-project, from the National plan for RDI, funded by the Romanian Ministry of Education and Research, and the National Authority for Scientific Research for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Cernea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cernea, M., Trupina, L., Vasile, B.S. et al. Nanotubes of piezoelectric BNT–BT0.08 obtained from sol–gel precursor. J Nanopart Res 15, 1787 (2013). https://doi.org/10.1007/s11051-013-1787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1787-y

Keywords

Navigation