Skip to main content
Log in

PEGylation of SPIONs by polycondensation reactions: a new strategy to improve colloidal stability in biological media

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, we report on a new route of PEGylation of superparamagnetic iron oxide nanoparticles (SPIONs) by polycondensation reaction with carboxylate groups. Structural and magnetic characterizations were performed by X-ray diffractometry (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The XRD confirmed the spinel structure with a crystallite average diameter in the range of 3.5–4.1 nm in good agreement with the average diameter obtained by TEM (4.60–4.97 nm). The TGA data indicate the presence of PEG attached onto the SPIONs’ surface. The SPIONs were superparamagnetic at room temperature with saturation magnetization (M S) from 36.7 to 54.1 emu/g. The colloidal stability of citrate- and PEG-coated SPIONs was evaluated by means of dynamic light scattering measurements as a function of pH, ionic strength, and nature of dispersion media (phosphate buffer and cell culture media). Our findings demonstrated that the PEG polymer chain length plays a key role in the coagulation behavior of the Mag-PEG suspensions. The excellent colloidal stability under the extreme conditions we evaluated, such as high ionic strength, pH near the isoelectric point, and cell culture media, revealed that suspensions comprising PEG-coated SPION, with PEG of molecular weight 600 and above, present steric stabilization attributed to the polymer chains attached onto the surface of SPIONs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albornoz C, Jacobo SE (2006) Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J Magn Magn Mater 305(1):12–15. doi:10.1016/j.jmmm.2005.11.021

    Article  CAS  Google Scholar 

  • Amici J, Celasco E, Allia P, Tiberto P, Sangermano M (2011) Poly(ethylene glycol)-coated magnetite nanoparticles: preparation and characterization. Macromol Chem Phys 212(4):411–416. doi:10.1002/macp.201000707

    CAS  Google Scholar 

  • Amstad E, Gillich T, Bilecka I, Textor M, Reimhult E (2009) Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett 9(12):4042–4048. doi:10.1021/Nl902212q

    Article  CAS  Google Scholar 

  • Barrera C, Herrera AP, Bezares N, Fachini E, Olayo-Valles R, Hinestroza JP, Rinaldi C (2012) Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications. J Colloid Interf Sci 377:40–50. doi:10.1016/j.jcis.2012.03.050

    Article  CAS  Google Scholar 

  • Bitea C, Walther C, Kim JI, Geckeis H, Rabung T, Scherbaum FJ, Cacuci DG (2003) Time-resolved observation of ZrO2-colloid agglomeration. Colloid Surface A 215(1–3):55–66. doi:10.1016/S0927-7757(02)00415-6

    Article  CAS  Google Scholar 

  • Butterworth MD, Illum L, Davis SS (2001) Preparation of ultrafine silica- and PEG-coated magnetite particles. Colloid Surface A 179(1):93–102. doi:10.1016/S0927-7757(00)00633-6

    Article  CAS  Google Scholar 

  • Cabuil V, Massart R, Bacri JC, Perzynski R, Salin D (1987) Ionic ferrofluids—toward fractional distillation. J Chem Res-S 5:130–131

    Google Scholar 

  • Chatterjee J, Haik Y, Chen CJ (2003) Size dependent magnetic properties of iron oxide nanoparticles. J Magn Magn Mater 257(1):113–118. doi:10.1016/S0304-8853(02)01066-1

    Article  CAS  Google Scholar 

  • Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J Mater Process Tech 191(1–3):235–237. doi:10.1016/j.jmatprotec.2007.03.011

    Article  CAS  Google Scholar 

  • Cordente N, Respaud M, Senocq F, Casanove MJ, Amiens C, Chaudret B (2001) Synthesis and magnetic properties of nickel nanorods. Nano Lett 1(10):565–568. doi:10.1021/Nl0100522

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2004) Surface chemistry and colloidal stability. In: The iron oxides. Wiley Weinheim, pp 221–252

  • Cullity BD (1978) Elements of X-ray diffraction 2nd edn. Addison-Wesley, Reading

  • Cullity BD, Graham CD (2009) Introduction to magnetic materials. IEEE Press, Piscataway

    Google Scholar 

  • Dave SR, Gao XH (2009) Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wires Nanomed Nanobi 1(6):583–609. doi:10.1002/Wnan.51

    Article  CAS  Google Scholar 

  • Deng XM, Liu Y, Yuan ML (2002) Study on biodegradable polymer. 3. Synthesis and characterization of poly(DL-lactic acid)-co-poly(ethylene glycol)-co-poly(l-lysine) copolymer. Eur Polym J 38(7):1435–1441. doi:10.1016/S0014-3057(02)00017-4

    Article  CAS  Google Scholar 

  • Di Marco M, Guilbert I, Port M, Robic C, Couvreur P, Dubernet C (2007) Colloidal stability of ultrasmall superparamagnetic iron oxide (USPIO) particles with different coatings. Int J Pharm 331(2):197–203. doi:10.1016/j.ijpharm.2006.11.002

    Article  Google Scholar 

  • Ding T, Liu QY, Shi R, Tian M, Yang H, Zhang LQ (2006) Synthesis, characterization and in vitro degradation study of a novel and rapidly degradable elastomer. Polym Degrad Stabil 91(4):733–739. doi:10.1016/j.polymdegradstab.2005.06.007

    Article  CAS  Google Scholar 

  • Fauconnier N, Bee A, Roger J, Pons JN (1996) Adsorption of gluconic and citric acids on maghemite particles in aqueous medium. Prog Coll Pol Sci S 100:212–216

    Article  CAS  Google Scholar 

  • Goya GF, Berquo TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94(5):3520–3528. doi:10.1063/1.1599959

    Article  CAS  Google Scholar 

  • Gubin SP, Spichkin YI, Koksharov YA, Yurkov GY, Kozinkin AV, Nedoseikina TI, Korobov MS, Tishin AM (2003) Magnetic and structural properties of Co nanoparticles in a polymeric matrix. J Magn Magn Mater 265(2):234–242. doi:10.1016/S0304-8853(03)00271-3

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  • Gyawali D, Nair P, Zhang Y, Tran RT, Zhang C, Samchukov M, Makarov M, Kim HKW, Yang JA (2010) Citric acid-derived in situ crosslinkable biodegradable polymers for cell delivery. Biomaterials 31(34):9092–9105. doi:10.1016/j.biomaterials.2010.08.022

    Article  CAS  Google Scholar 

  • Hiemenz P, Rajagopalan R (1997) Principles of colloid and surface chemistry. Marcell Dekker, New York

    Google Scholar 

  • Hou YL, Kondoh H, Kogure T, Ohta T (2004) Preparation and characterization of monodisperse FePd nanoparticles. Chem Mater 16(24):5149–5152. doi:10.1021/Cm048902c

    Article  CAS  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science principles and applications. Academic Press, London

    Google Scholar 

  • Hyeon T, Lee SS, Park J, Chung Y, Bin Na H (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801. doi:10.1021/Ja016812s

    Article  CAS  Google Scholar 

  • Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106(32):7729–7744. doi:10.1021/Jp0209289

    Article  CAS  Google Scholar 

  • Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200(1–3):359–372. doi:10.1016/S0304-8853(99)00347-9

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. doi:10.1021/Cr068445e

    Article  CAS  Google Scholar 

  • Lee JW, Isobe T, Senna M (1996) Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation. Colloid Surface A 109:121–127

    Article  CAS  Google Scholar 

  • Lekkerkerker H, Tuinier R (2011) Colloids and the depletion interaction. Springer, New York

    Book  Google Scholar 

  • Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783. doi:10.1021/Cm960077f

    Article  CAS  Google Scholar 

  • Lu AH, Schmidt W, Matoussevitch N, Bonnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schuth F (2004) Nanoengineering of a magnetically separable hydrogenation catalyst. Angew Chem Int Edit 43(33):4303–4306. doi:10.1002/anie.200454222

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Edit 46(8):1222–1244. doi:10.1002/anie.200602866

    Article  CAS  Google Scholar 

  • Lu CC, Bhatt LR, Jun HY, Park SH, Chai KY (2012) Carboxyl-polyethylene glycol-phosphoric acid: a ligand for highly stabilized iron oxide nanoparticles. J Mater Chem 22(37):19806–19811. doi:10.1039/C2jm34327d

    Article  CAS  Google Scholar 

  • Lutz JF, Stiller S, Hoth A, Kaufner L, Pison U, Cartier R (2006) One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules 7(11):3132–3138. doi:10.1021/Bm0607527

    Article  CAS  Google Scholar 

  • Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE T Magn 17(2):1247–1248. doi:10.1109/Tmag.1981.1061188

    Article  Google Scholar 

  • Morais PC, Garg VK, Oliveira AC, Silva LP, Azevedo RB, Silva AML, Lima ECD (2001) Synthesis and characterization of size-controlled cobalt-ferrite-based ionic ferrofluids. J Magn Magn Mater 225(1–2):37–40. doi:10.1016/S0304-8853(00)01225-7

    Article  CAS  Google Scholar 

  • Mukhopadhyay A, Joshi N, Chattopadhyay K, De G (2012) A facile synthesis of PEG-coated magnetite (Fe3O4) nanoparticles and their prevention of the reduction of cytochrome C. Acs Appl Mater Inter 4(1):142–149. doi:10.1021/Am201166m

    Article  CAS  Google Scholar 

  • Nakamoto K (1970) Infrared spectra of inorganic and coordination compounds, 4th edn. Wiley, New York

    Google Scholar 

  • Ni F, Jiang L, Yang RX, Chen ZP, Qi X, Wang JW (2012) Effects of PEG length and iron oxide nanoparticles size on reduced protein adsorption and non-specific uptake by macrophage cells. J Nanosci Nanotechno 12(3):2094–2100. doi:10.1166/jnn.2012.5753

    Article  CAS  Google Scholar 

  • Odenbach S (2003) Magnetic fluids—suspensions of magnetic dipoles and their magnetic control. J Phys-Condens Mat 15(15):S1497–S1508. doi:10.1088/0953-8984/15/15/312

    Article  CAS  Google Scholar 

  • Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliver Rev 55(3):403–419. doi:10.1016/S0169-409x(02)00226-0

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167–R181. doi:10.1088/0022-3727/36/13/201

    Article  CAS  Google Scholar 

  • Park JY, Daksha P, Lee GH, Woo S, Chang YM (2008) Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications. Nanotechnology 19(36):365603. doi:10.1088/0957-4484/19/36/365603

    Article  Google Scholar 

  • Pasche S, Voros J, Griesser HJ, Spencer ND, Textor M (2005) Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. J Phys Chem B 109(37):17545–17552. doi:10.1021/Jp050431+

    Article  CAS  Google Scholar 

  • Popplewell J, Sakhnini L (1995) The dependence of the physical and magnetic-properties of magnetic fluids on particle-size. J Magn Magn Mater 149(1–2):72–78. doi:10.1016/0304-8853(95)00341-X

    Article  CAS  Google Scholar 

  • Quinzler D, Mecking S (2009) Renewable resource-based poly(dodecyloate) by carbonylation polymerization. Chem Commun 36:5400–5402. doi:10.1039/B912294j

    Article  Google Scholar 

  • Richter AW, Akerblom E (1983) Antibodies against polyethylene-glycol produced in animals by immunization with monomethoxy polyethylene-glycol modified proteins. Int Arch Aller a Imm 70(2):124–131

    Article  CAS  Google Scholar 

  • Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, Gonzalez-Carreno T, Morales MP, Serna CJ (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42 (22). doi: 10.1088/0022-3727/42/22/224002

  • Sampaio JF, Beverly KC, Heath JR (2001) DC transport in self-assembled 2D layers of Ag nanoparticles. J Phys Chem B 105(37):8797–8800

    Article  CAS  Google Scholar 

  • Schudel M, Behrens SH, Holthoff H, Kretzschmar R, Borkovec M (1997) Absolute aggregation rate constants of hematite particles in aqueous suspensions: a comparison of two different surface morphologies. J Colloid Interf Sci 196(2):241–253. doi:10.1006/jcis.1997.5207

    Article  CAS  Google Scholar 

  • Soler MAG, Lima ECD, Nunes ES, Silva FLR, Oliveira AC, Azevedo RB, Morais PC (2011) Spectroscopic study of maghemite nanoparticles surface-grafted with DMSA. J Phys Chem A 115(6):1003–1008. doi:10.1021/jp1109916

    Article  CAS  Google Scholar 

  • Sun SH, Murray CB (1999) Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited). J Appl Phys 85(8):4325–4330. doi:10.1063/1.370357

    Article  CAS  Google Scholar 

  • Tartaj P, Morales MD, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182–R197. doi:10.1088/0022-3727/36/13/202

    Article  CAS  Google Scholar 

  • Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012) Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14 (11). doi: 10.1007/S11051-012-0964-8

  • Vayssieres L (2005) On the thermodynamic stability of metal oxide nanoparticles in aqueous solutions. Int J Nanotechnol 2(4):411–439. doi:10.1504/Ijnt.2005.008077

    Article  CAS  Google Scholar 

  • Vayssieres L, Chaneac C, Tronc E, Jolivet JP (1998) Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. J Colloid Interf Sci 205(2):205–212. doi:10.1006/jcis.1998.5614

    Article  CAS  Google Scholar 

  • Viali WR, Alcantara GB, Sartoratto PPC, Soler MAG, Mosiniewicz-Szablewska E, Andrzejewski B, Morais PC (2010) Investigation of the molecular surface coating on the stability of insulating magnetic oils. J Phys Chem C 114(1):179–188. doi:10.1021/Jp908732b

    Article  CAS  Google Scholar 

  • Wan JX, Chen XY, Wang ZH, Yang XG, Qian YT (2005) A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. J Cryst Growth 276(3–4):571–576. doi:10.1016/j.jcrysgro.2004.11.423

    Article  CAS  Google Scholar 

  • Wu W, He QG, Jiang CZ (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415. doi:10.1007/s11671-008-9174-9

    Article  CAS  Google Scholar 

  • Zhang MQ, Desai T, Ferrari M (1998) Proteins and cells on PEG immobilized silicon surfaces. Biomaterials 19(10):953–960

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2010/20546-0), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 476257/2010-7), the Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors would like to thank LME/LNNano/CNPEM for technical support during electron microscopy investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Jafelicci Jr..

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1407 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viali, W.R., da Silva Nunes, E., dos Santos, C.C. et al. PEGylation of SPIONs by polycondensation reactions: a new strategy to improve colloidal stability in biological media. J Nanopart Res 15, 1824 (2013). https://doi.org/10.1007/s11051-013-1824-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1824-x

Keywords

Navigation