Skip to main content
Log in

Magnetic configurations of Ni–Cu alloy nanowires obtained by the template method

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

High aspect ratio nanowires of Ni–Cu alloys have been synthesized by potentiostatic electrochemical deposition in etched ion-track membranes. The nickel-to-copper ratio in the nanowires was controlled via the deposition potential and electrochemical bath composition. We present a detailed study of nanowire properties including morphology, composition, and magnetic behavior. We report the magnetic configurations measured as function of the nanowire composition and discuss domain formation, anisotropy aspects, and local easy axis distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beleggia M, Tandon S, Zhu Y, De Graef M (2004) On the magnetostatic interactions between nanoparticles of arbitrary shape. J Magn Magn Mater 278:270–284

    Article  CAS  Google Scholar 

  • Enculescu I, Toimil-Molares ME, Zet C (2007) Current perpendicular to plane single-nanowire GMR sensor. Appl Phys A 86:43–47

    Article  CAS  Google Scholar 

  • Fert A, Piraux L (1999) Magnetic nanowires. J Magn Magn Mater 200:338–358

    Article  CAS  Google Scholar 

  • Gravier L, Wegrowe J-E, Wade T et al (2002) Thermopower and GMR of a single Co–Cu multilayer nanowire. IEEE Trans Magn 38:2700–2702

    Article  CAS  Google Scholar 

  • Kronmuller H, Durst KD, Sagawa M (1988) Analysis of the magnetic hardening mechanism in RE-FeB permanent magnets. J Magn Magn Mater 74:291–302

    Article  Google Scholar 

  • Kuncser V, Keune W (2011) Step-shape angular spin distribution in layered systems by 57Fe Mossbauer spectroscopy: a general treatment. J Magn Magn Mater 323:2196–2201

    Article  CAS  Google Scholar 

  • Kuncser V, Keune W, Vopsaroiu M et al (2003) Easy axis distribution in modern nanoparticle storage media: a new methodological approach. J Optoelectron Adv Mat 5:217–226

    CAS  Google Scholar 

  • Kuncser V, Schinteie G, Palade P et al (2010) Magnetic properties of Fe–Co layers and Fe–Mn/Fe–Co bilayers obtained by thermo-ionic vacuum arc. J Alloys Compd 499:23–29

    Article  CAS  Google Scholar 

  • Mansuripur M (1995) The physical principles of magneto-optical recording. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Martin CR (1994) Nanomaterials—a membrane-based synthetic approach. Science 266:1961–1966

    Article  CAS  Google Scholar 

  • Matei E, Ion L, Antohe S, Neumann R, Enculescu I (2010) Multisegment CdTe nanowire homojunction photodiode. Nanotechnology 21:105202

    Article  Google Scholar 

  • Michels A, Weissmuller J, Widenmann A, Barker JG (2000) Exchange-stiffness constant in cold-worked and nanocrystalline Ni measured by elastic small-angle neutron scattering. J Appl Phys 87:5953–5955

    Article  CAS  Google Scholar 

  • Ney A (2011) Magnetic properties of semiconductors and substrates beyond diamagnetism studied by superconducting quantum interference device magnetometry. Semicond Sci Technol 26:064010

    Article  Google Scholar 

  • Ohgai T, Gravier L, Hoffer X et al (2003) Template synthesis and magnetoresistance property of Ni and Co single nanowires electrodeposited into nanopores with a wide range of aspect ratios. J Phys D 36:3109–3114

    Article  CAS  Google Scholar 

  • Ozin GA (1992) Nanochemistry: synthesis in diminishing dimensions. Adv Mat 4:612–649

    Article  CAS  Google Scholar 

  • Richter A, Eschrig H (1988) LCAO-CPA for disordered ferromagnetic 3d transition metal alloys. Magnetic moment formation in NiCu and FeCo. Phys Scr 37:948–951

    Article  CAS  Google Scholar 

  • Ross CA, Hwang M, Shima M et al (2002) Micromagnetic behavior of electrodeposited cylinder arrays. Phys Rev B 65:144417

    Article  Google Scholar 

  • Sellmeyer DJ, Zheng M, Skomski R (2001) Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J Phys Condens Matter 13:R433–R460

    Article  Google Scholar 

  • Sugawara A, Streblechenko D, McCartney M, Scheinfein MR (1998) Magnetic coupling in self-organized narrow-spaced Fe nanowire arrays. IEEE Trans Magn 34:1081–1083

    Article  CAS  Google Scholar 

  • Toimil Molares ME, Buschmann V, Dobrev D, Neumann R, Scholz R, Schuchert IU, Vetter J (2001) Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv Mat 13:62–65

    Article  Google Scholar 

  • Yi G, Schwarzacher W (1999) Single crystal superconductor nanowires by electrodeposition. Appl Phys Lett 74:1746–1748

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support through the exploratory research project PCE IDEI 75/2011 is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ionut Enculescu or Victor Kuncser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matei, E., Enculescu, I., Toimil-Molares, M.E. et al. Magnetic configurations of Ni–Cu alloy nanowires obtained by the template method. J Nanopart Res 15, 1863 (2013). https://doi.org/10.1007/s11051-013-1863-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1863-3

Keywords

Navigation