Skip to main content
Log in

Porous silicon nanoparticles as scavengers of hazardous viruses

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report that silicon nanoparticles (SiNPs) with typical sizes from 5 to 50 nm prepared by grinding of porous silicon can act as efficient scavengers of human immunodeficiency virus (HIV) and respiratory syncytial virus (RSV). In vitro studies have revealed a strong suppression of the viral activity in the presence of SiNPs with concentration above 0.1 and 0.01 mg/mL for HIV and RSV, respectively. The observed effect is explained by binding of the virions with SiNPs that is supposed to be universal for different enveloped viruses. Because of the cytotoxic concentration of SiNPs is of the order of 1 mg/mL, SiNPs can be proposed for applications in new harmless methods of antiviral treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adair BM (2009) Nanoparticle vaccines against respiratory viruses. WIREs Nanomed Nanobiotechnol 1:405–414

    Article  Google Scholar 

  • Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60:1266–1277

    Article  Google Scholar 

  • Brandenburg AH, Neijens HJ, Osterhaus AD (2001) Pathogenesis of RSV lower respiratory tract infection: implications for vaccine development. Vaccine 19:2769–2782

    Article  Google Scholar 

  • Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048

    Article  Google Scholar 

  • Canham LT (2007) Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 18:1–6

    Article  Google Scholar 

  • Dowell SF, Anderson LJ, Gary HE, Erdman DD, Plouffe JF, File TM, Marston BJ, Breiman RF (1996) Respiratory syncytial virus is an important cause of community-acquired lower respiratory infection among hospitalized adults. J Infect Dis 174:456–462

    Article  Google Scholar 

  • Durnev AD, Solomina AS, Daugel-Dauge NO, Zhanataev AK, Shreder ED, Nemova EP, Shreder OV, Veligura VA, Osminkina LA, Timoshenko VY, Seredenin SB (2010) Evaluation of genotoxicity and reproductive toxicity of silicon nanocrystals. B Exp Biol Med 149:445–449

    Article  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3(6):1–10

    Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430

    Article  Google Scholar 

  • Ferin J, Oberdorster G (1985) Biological effects and toxicity assessment of titanium dioxides: anatase and rutile. Am Ind Hyg Assoc J 46:69–72

    Article  Google Scholar 

  • Föll H, Christophersen M, Carstensen J, Hasse G (2002) Formation and application of porous silicon. Mater Sci Eng R 39:93–141

    Article  Google Scholar 

  • Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16(10):8894–8918

    Article  Google Scholar 

  • Haggstrom J, Balyozova D, Klabunde KJ, Marchin G (2010) Virucidal properties of metal oxide nanoparticles and their halogen adducts. Nanoscale 2:234–529

    Google Scholar 

  • Halfpenny KC, Wright DW (2010) Nanoparticle detection of respiratory infection. WIREs Nanomed Nanobiotechnol 2:277–290

    Article  Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11(7):714–718

    Article  Google Scholar 

  • Hong C, Lee J, Zheng H, Hong SS, Lee C (2011) Porous silicon nanoparticles for cancer photothermotherapy. Nanoscale Res Lett 6:321

    Article  Google Scholar 

  • Jafry HR, Liga MV, Li Q, Barron AR (2011) Simple route to enhanced photocatalytic activity of P25 titanium dioxide nanoparticles by silica addition. Environ Sci Technol 45:1563–1568

    Article  Google Scholar 

  • Kabashin AV, Delaporte Ph, Pereira A, Grojo D, Torres R, Sarnet Th, Sentis M (2010) Nanofabrication with pulsed lasers. Nanosacle Res Lett 5:454–463

    Article  Google Scholar 

  • Kalem S, Yavuzcetin O (2000) Possibility of fabricating light-emitting porous silicon from gas phase etchants. Opt Express 6(1):7–11

    Article  Google Scholar 

  • Katsuhide F, Masanori H, Haruhisa K (2009) Effects of ultrafine TiO2 particles on gene expression profile in human keratinocytes without illumination: involvement of extracellular matrix and cell adhesion. Toxicology Lett 191(23):109–117

    Google Scholar 

  • Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363:2434–2443

    Article  Google Scholar 

  • Kovalainen M, Mönkäre J, Kaasalainen M, Riikonen J, Lehto VP, Salonen J, Herzig KH, Järvinen K (2013) Development of porous silicon nanocarriers for parenteral peptide delivery. Mol Pharm 10:353–359

    Article  Google Scholar 

  • Kovalev D, Gross E, Künzner N, Koch F, Timoshenko VYu, Fujii M (2002) Resonant electronic energy transfer from excitons confined in silicon nanocrystals to oxygen molecules. Phys Rev Lett 89:137401

    Article  Google Scholar 

  • Kumar A, Boruah BM, Liang XJ (2011) Gold Nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J Nanomater 10:1–17

    Google Scholar 

  • Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8(1):1–10

    Article  Google Scholar 

  • Lara HH, Ixtepan-Turrent L, Garza Treviño EN, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9(38):1–9

    Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Article  Google Scholar 

  • Low SP, Voelcker NH, Canham LT, Williams KA (2009) The biocompatibility of porous silicon in tissues of the eye. Biomaterials 30:2873–2880

    Article  Google Scholar 

  • Low SP, Williams KA, Canham LT, Voelcker NH (2010) Generation of reactive oxygen species from porous silicon microparticles in cell culture medium. J Biomed Mat Res A 93A(3):1124–1131

    Google Scholar 

  • Lozovski V, Tsykhonya A (2011) Electrodynamic interactions between a mesoparticle and a quantum dot. J Opt Soc Am B 28:365–371

    Article  Google Scholar 

  • Osminkina LA, Gongalsky MB, Motuzuk AV, Timoshenko VY, Kudryavtsev AA (2011a) Silicon nanocrystals as photo- and sono-sensitizers for biomedical applications. Appl Phys B 105(3):665–668

    Article  Google Scholar 

  • Osminkina LA, Luckyanova EN, Gongalsky MB, Kudryavtsev AA, Gaydarova AKh, Poltavtseva RA, Kashkarov PK, Timoshenko VYu, Sukhikh GT (2011b) Effects of nanostructurized silicon on proliferation of stem and cancer cell. Bull Exp Biol Med 151(1):79–83

    Article  Google Scholar 

  • Osminkina LA, Tamarov KP, Sviridov AP, Galkin RA, Gongalsky MB, Solovyev VV, Kudryavtsev AA, Timoshenko VYu (2012) Photoluminescent biocompatible silicon nanoparticles for cancer theranostic applications. J Biophotonics 5(7):529–535

    Article  Google Scholar 

  • Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336

    Article  Google Scholar 

  • Porstmann T, Kiessig ST (1997) Enzyme immunoassay techniques an overview. J Immunol Methods 150:5–21

    Article  Google Scholar 

  • Salonen J, Laitinen L, Kaukonen AM, Tuura J, Bjorkqvist M, Heikkila T, Vaha-Heikkila K, Hirvonen J, Lehto VP (2005) Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Controlled Release 108:362–374

    Article  Google Scholar 

  • Santos HA, Riikonen J, Salonen J, Makila E, Heikkilä T, Laaksonen T, Peltonen L, Lehto VP, Hirvonen J (2010) In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size. Acta Biomater 6(7):2721–2731

    Article  Google Scholar 

  • Sekhon BS, Saluja V (2011) Nanovaccines-an overview. Int J Pharm Front Res 1(1):101–109

    Google Scholar 

  • Shen F, Wang J, Xu Zh, Wu Y, Chen Q, Li X, Jie X, Li L, Yao M, Guo X, Zhu T (2012) Rapid flu diagnosis using silicon nanowire sensor. Nano Lett 12(7):3722–3730

    Article  Google Scholar 

  • Smith R, Collins S (1991) Porous silicon formation mechanisms. J Appl Phys 71:R1–R22

    Article  Google Scholar 

  • Sun L, Singh AK, Vig K, Pillai SR, Singh SR (2008) Silver nanoparticles inhibit replication of respiratory syncytial virus. J Biomed Biotechnol 4:149–158

    Google Scholar 

  • Sviridov AP, Andreev VG, Ivanova EM, Osminkina LA, Tamarov KP, Timoshenko VYu (2013) Porous silicon nanoparticles as sensitizers for ultrasonic hyperthermia. Appl Phys Lett 103:193110

    Article  Google Scholar 

  • Theiss W (1997) Optical properties of porous silicon. Surf Sci Rep 29:91–192

    Article  Google Scholar 

  • Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, Fukuda K (2003) Mortality associated with influenza and respiratory syncytial virus in the United States. J Am Med Assoc 289(2):179–186

    Article  Google Scholar 

  • Tijssen P (1985) Practice and theory of enzyme immunoassay. Elsevier, Amsterdam

    Google Scholar 

  • Timoshenko VYu, Kudryavtsev AA, Osminkina LA, Vorontsov AS, Ryabchikov YuV, Belogorokhov IA, Kovalev D, Kashkarov PK (2006) Silicon nanocrystals as photosensitizers of active oxygen for biomedical applications. JETP Lett 83(9):423–426

    Article  Google Scholar 

  • UNAIDS (2012) UNAIDS World AIDS Day Report. http://www.unaids.org/en/

  • Xiao L, Gu L, Howell SB, Sailor MJ (2011) Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 5(5):3651–3659

    Article  Google Scholar 

  • Yu JC, Ho W, Lin J, Yip H, Wong PK (2003) Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ Sci Technol 37:2296–2301

    Article  Google Scholar 

  • Zhu RR, Wang SL (2009) Bio-effects of nano-TiO2 on DNA and cellular ultrastructure with different polymorph and size. Mater Sci Eng C 29(3):691–696

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. D. Petrov and Dr. A. Gylyazova for their assistance in SEM measurements and cell cytotoxicity evaluation, respectively. The work was partially supported by RFBR (Project No. 12-02-31266 mol_a) and the Russian Ministry of Education and Science (Project No. 8737).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Osminkina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osminkina, L.A., Timoshenko, V.Y., Shilovsky, I.P. et al. Porous silicon nanoparticles as scavengers of hazardous viruses. J Nanopart Res 16, 2430 (2014). https://doi.org/10.1007/s11051-014-2430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2430-2

Keywords

Navigation