Skip to main content
Log in

Combined bactericidal activity of silver nanoparticles and hexadecylpyridinium salicylate ionic liquid

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Recently, ionic liquids have been used as dispersing agents for silver nanoparticle (AgNP) preparation. In this paper, we have shown a simple method to prepare AgNP in aqueous media using an ionic liquid called hexadecylpyridinium salicylate (HDPSal) as dispersing agent. The dispersions were produced by the chemical reduction of silver ions in aqueous media with different concentrations of HDPSal and tetrabutylammonium borohydride as reducing agent. The UV–Visible electronic spectra showed the characteristic plasmonic resonance band around 420 nm, confirming the formation of AgNPs. The TEM images confirmed the formation of spherical particles with diameters lower than 10 nm. The charge of these particles was determined by Zeta potential and they were around +50 mV, indicating that the HDP cations are surrounding the AgNPs, avoiding their agglomeration. Most of the dispersions remained stable for at least 1 month. Microbiological assays showed that the combination of AgNP with HDPSal results in wider range of antimicrobial effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez-Puebla RA, Arceo E, Goulet PJG, Garrido JJ, Aroca RF (2005) Role of nanoparticles surface charge in surface-enhanced Raman scattering. J Phys Chem B 109:3787–3792. doi:10.1021/jp045015o

    Article  Google Scholar 

  • An J, Wang D, Luo Q, Yuan X (2009) Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid. Mater Sci Eng C 29:1984–1989. doi:10.1016/j.msec.2009.03.015

    Article  Google Scholar 

  • Bhatt AI, Mechler A, Martin LL, Bond AM (2007) Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic effects underlying nanoparticle, clusters and nanowire. J Mater Chem 17:2241–2250. doi:10.1039/b618036a

    Article  Google Scholar 

  • Bica K, Rijksen C, Nieuwenhuyzen M, Rogers RD (2010) In search of pure ionic liquid salt form of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys Chem Chem Phys 12:2011–2017. doi:10.1039/b923855g

    Article  Google Scholar 

  • Chen S, Liu Y, Wu G (2005) Stabilized and size-tunable gold nanoparticles formed in a quaternary ammonium-based room temperature ionic liquid under gamma-irradiation. Nanotechnology 16:2360–2364. doi:10.1088/0957-4484/16/10/061

    Article  Google Scholar 

  • Choi SY, Rodrigues H, Mirjafari A, Gilpin DF, McGrath S, Malcolm KR, Tunney MM, Rogers RD, McNally T (2011) Dual functional ionic liquids as plasticizers and antimicrobial agents for medical polymers. Green Chem 13:1527–1535. doi:10.1039/c1gc15132k

    Article  Google Scholar 

  • Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:1–12. doi:10.1155/2012/751075

    Article  Google Scholar 

  • Dorjanamjin D, Ariuna M, Shim YK (2008) Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity. Int J Mol Sci 9:807–820. doi:10.3390/ijms9050807

    Article  Google Scholar 

  • Dupont J (2009) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350. doi:10.1590/S0103-50532004000300002

    Article  Google Scholar 

  • Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 124:4228–4429. doi:10.1021/ja025818u

    Article  Google Scholar 

  • Fages E, Pascual J, Fenollar O, Sanoguerra DG, Balart R (2011) Study of antibacterial properties of polypropylene filled with surfactant-coated silver nanoparticles. Polym Eng Sci 51:804–811. doi:10.1002/pen.21889

    Article  Google Scholar 

  • Ferraz R, Branco LC, Prudencio C, Noronha JP, Petrovski Z (2011) Ionic liquids as active pharmaceutical ingredients. ChemMedChem 6:975–985. doi:10.1002/cmdc.201100082

    Article  Google Scholar 

  • Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis and biomedical applications. Acc Chem Res 42:1097–1107. doi:10.1021/ar9000026

    Article  Google Scholar 

  • Guo S, Shi F, Gu Y, Yang J, Deng Y (2007) Size-controllable synthesis of gold nanoparticles via carbonylation and reduction of hydrochloroauric acid with CO and H2O in ionic liquid. Chem Lett 34:830–831. doi:10.1246/c1.2005.830

    Article  Google Scholar 

  • Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed Nanotech Biol Med 8:37–45. doi:10.1016/j.nano.2011.05.007

    Article  Google Scholar 

  • Hedberg J, Lundin M, Lowe T, Blomberg E, Wold S, Wallinder IO (2012) Interactions between surfactants and silver nanoparticles of varying charge. J Colloid Interface Sci 369:193–201. doi:10.1016/j.cis.2011.12.064

    Article  Google Scholar 

  • Hough WL, Rogers RD (2007) Ionic liquids then and now: from solvents to materials to active pharmaceutical ingredients. Bull Chem Soc Jap 12:2262–2269. doi:10.1246/bcsj.80.2262

    Article  Google Scholar 

  • Hough WL, Smiglak M, Rodriguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel J, Carliss RD, Soutullo MD, Davis JH, Rogers RD (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429–1436. doi:10.1039/b706677p

    Article  Google Scholar 

  • Hough-Troutman WL, Smiglak M, Griffin S, Reichert WM, Mirska I, Liebert JJ, Adamska T, Nawrol J, Stasiewicz M, Rogers RD, Pernak J (2009) Ionic liquids with dual biological function: sweet and anti-microbial hydrophobic quaternary ammonium-based salts. New J Chem 33:26–33. doi:10.1039/b813213p

    Article  Google Scholar 

  • Huang W, Chen S, Liu Y, Fu H, Wu G (2011) The controlled synthesis of stable gold nanoparticles in quaternary ammonium ionic liquids by simple heating. Nanotechnology 22:1–7. doi:10.1088/0957-4484/22/2/025602

    Google Scholar 

  • Iida M, Baba C, Inoue M, Yoshida H, Taguchi E, Furusho H (2008) Ionic liquids of bis (alkylethylenediamine) silver (I) salts and the formation of silver (0) nanoparticles from the ionic liquid system. Chem Eur J 14:5047–5056. doi:10.1002/chem.200701764

    Article  Google Scholar 

  • Iida M, Kawakami S, Syouno E, Er S, Taguchi E (2011) Properties of ionic liquids containing silver(I) or protic alkylethylenediamine cations with a bis(trifluoromethanesulfonyl)amide anion. J Colloid Interface Sci 356:630–638. doi:10.1016/jcis.2011.01.070

    Article  Google Scholar 

  • Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc 126:3026–3027. doi:10.1021/ja039895g

    Article  Google Scholar 

  • Janiak C (2013) Ionic liquids for the synthesis and stabilization of metal nanoparticles. J Chem Sci 68:1059–1089. doi:10.5560/znb.2013-3140

    Google Scholar 

  • Jin Y, Wang P, Yin D, Liu J, Qin L, Yu N, Xie G (2007) Gold nanoparticles prepared by sonochemical method in thiol-functionalized ionic liquid. Colloid Surf A 302:366–370. doi:10.1016/j.colsurfa.2007.02.060

    Article  Google Scholar 

  • Kim KS, Demberelnyamba D, Lee HY (2004) Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir 20:556–560. doi:10.1021/la0355848

    Article  Google Scholar 

  • Kim KS, Choi S, Cha JH, Yeon SH, Lee H (2006) Facile one-pot synthesis of gold nanoparticles using alcohol ionic liquids. J Mater Chem 16:1315–1317. doi:10.1039/b601478j

    Article  Google Scholar 

  • Kim TY, Kim WJ, Hong SH, Kim JE, Suh KS (2009) Ionic liquid assisted formation of silver nanoparticles. Angew Chem 121:3864–3867. doi:10.1002/ange.200806379

    Article  Google Scholar 

  • Lazarus LL, Riche CT, Malmstadt N, Brutchey RL (2012) Effect of ionic liquid impurities on the synthesis of silver nanoparticles. Langmuir 28:15987–15993. doi:10.1021/la303617f

    Article  Google Scholar 

  • Lee CY, Huang CH, Wei GT (2010) Behaviors of ionic liquids in the phase transfer of aqueous metal nanoparticles. Colloid Surf A 367:24–30. doi:10.1016/j.colsulfa.2010.06.011

    Article  Google Scholar 

  • Maity A, Jaffer SS, Das T, Ghosh P, Purkayastha P (2011) Orientation of a TICP probe trapped in the peripherical envelope around silver nanoparticles. Langmuir 27:4068–4075. doi:10.1021/la1048858

    Article  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51. doi:10.1016/j.carbpol.2007.07.025

    Article  Google Scholar 

  • Mock JJ, Barbic M, Smith DR, Schultz DR, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticle. J Chem Phys 116:6755–6759. doi:10.1063/1.1462610

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kuori JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticle. Nanotechnology 16:2346–2353. doi:10.1088/0957-4484/16/10/059

    Article  Google Scholar 

  • Olsson U, Soederman O, Guering P (1986) Characterization of micellar aggregates in viscoelastic surfactant solutions. A nuclear magnetic resonance and light scattering study. J Phys Chem 90:5223–5232. doi:10.1021/j100412a066

    Article  Google Scholar 

  • Patil RS, Kokate MR, Slavi PP, Kolecar SS (2011) A novel one step synthesis of silver nanoparticles using room temperature ionic liquid and their biocidal activity. C R Chim 14:1122–1127. doi:10.1016/j.crci.2011.07.009

    Article  Google Scholar 

  • Pernak J, Sobaszkiewicz K, Mirska I (2003) Anti-microbial activities of ionic liquids. Green Chem 5:52–56. doi:10.1039/b207543c

    Article  Google Scholar 

  • Rao YS, Kotakadi VS, Prasad TNVKV, Reddy AV, Sai-Gopal DRV (2013) Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochim Acta A Mol Biomol Spectrosc 103:156–159. doi:10.1016/j.saa.2012.11.028

    Article  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592. doi:10.1039/b502142c

    Article  Google Scholar 

  • Saadeh SM, Yasseen Z, Sharif FA, Shawish HMA (2009) New room temperature ionic liquids with interesting ecotoxicological and antimicrobial properties. Ecotoxicol Environ Saf 72:1805–1809. doi:10.1016/j.ecoenv.2008.12.015

    Article  Google Scholar 

  • Safavi A, Zeinali S (2010) Synthesis of highly stable gold nanoparticles using conventional and germinal ionic liquids. Colloid Surf A 362:121–126. doi:10.1016/j.colsurfa.2010.04.002

    Article  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96. doi:10.1016/j.cis.2008.09.002

    Article  Google Scholar 

  • Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322–326. doi:10.1021/ed084p322

    Article  Google Scholar 

  • Soni SS, Vekariya RL, Aswal VK (2013) Ionic liquid induced sphere-to-ribbon transition in the block copolymer mediated synthesis of silver nanoparticles. R Soc Chem Adv 3:8398–8406. doi:10.1039/c3ra41138a

    Google Scholar 

  • Wan LS (1983) Interaction of salicylic acid with quaternary ammonium compounds. J Pharm Sci 57:1903–1906. doi:10.1002/jps.2600571116

    Article  Google Scholar 

  • Yao K, Lu W, Li X, Wang J, Yuan J (2013) Tunable synthesis of Ag films at ionic liquid-aqueous interfaces. Chem Commun 49:1398–1400. doi:10.1039/c2cc38375f

    Article  Google Scholar 

  • Zukoski CF, Hyning DLV (1998) Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir 14:7034–7046. doi:10.1021/la980325h

    Article  Google Scholar 

Download references

Acknowledgments

L. T. Silveira thanks CNPq for postdoctoral scholarship (157184/2012-9) and F. F. Camilo also thanks CNPq for the financial support (483878/2011-1). The authors also acknowledge the transmission electron microscopy support of LNNano—Center for Nanoscience and Nanotechnology/MCT (research proposal TEM-MSC 15017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda F. Camilo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7612 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira, L.T., Liberatore, A.M.A., Koh, I.H.J. et al. Combined bactericidal activity of silver nanoparticles and hexadecylpyridinium salicylate ionic liquid. J Nanopart Res 17, 129 (2015). https://doi.org/10.1007/s11051-015-2934-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2934-4

Keywords

Navigation