Skip to main content
Log in

Approach for an improved experimental evaluation of the specific absorption rate in magnetic fluid hyperthermia

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A new methodology for the accurate determination of the specific absorption rate of ferrofluids with magnetite nanoparticles of average size of about 10 nm subjected to alternative current magnetic fields is proposed. A simple numerical compensation of the heating rates by the cooling rates obtained at similar temperatures is employed. Comparisons of the as-obtained adiabatic heating curves with theoretical evaluations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arthur RM, Straube WL, Trobaugh JW, Moros EG (2005) Non-invasive estimation of hyperthermia temperatures with ultrasound. Int J Hyperth 21(6):589–600

    Article  Google Scholar 

  • Ayala V, Herrera AP, Latorre-Esteves M, Torres-Lugo M, Rinaldi C (2013) Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles. J Nanopart Res 15:1874

    Article  Google Scholar 

  • Basel MT et al (2012) Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomed 7:297–306

    Article  Google Scholar 

  • Bekovic M, Hamler A (2010) Determination of the Heating Effect of Magnetic Fluid in Alternating Magnetic Field. IEEE Trans Magn 46(2):552–555

    Article  Google Scholar 

  • Bica D (1995) Preparation ofmagnetic fluids for various applications. Rom Rep Phys 47:265

    Google Scholar 

  • Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921

    Article  Google Scholar 

  • Cui ZG, Piao JL, Rehman MUR, Ogawa R, Li P, Zhao Q, Kondo T, Inadera H (2014) Molecular mechanisms of hyperthermia-induced apoptosis enhanced by withaferin A. Eur J Pharmacol 723:99–107

    Article  Google Scholar 

  • Fernandez GV et al (2013) Mechanisms of hyperthermia in magnetic nanoparticles. J Phys D Appl Phys 46:312001

    Article  Google Scholar 

  • Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129(9):2628–2635

    Article  Google Scholar 

  • Huang HS, Hainfeld JF (2013) Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomed 8(1):2521–2532

    Google Scholar 

  • Huang HW, Liauth CT (2011) Therapeutical applications of heat in cancer therapy. J Med Biol Eng 32(1):1–11

    Article  Google Scholar 

  • Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia. J Appl Phys 111:07B306

    Article  Google Scholar 

  • Landsberg R, De Rowe A, Katzir A, Shtabsky A, Fliss DM, Gil Z (2009) Laser-induced hyperthermia for treatment of granulation tissue growth in rats. Otolaryngol Head Neck 140(4):480–486

    Article  Google Scholar 

  • Luchetti F, Canonico B, Felice MD, Burattini S, Battistelli M, Papa S, Falcieri E (2003) Hyperthermia triggers apoptosis and affects cell adhesiveness in human neuroblastoma cells. Histol Histopathol 18(4):1041–1052

    Google Scholar 

  • Natividad E, Castro M, Mediano A (2009) Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. J Magn Magn Mater 321:1497–1500

    Article  Google Scholar 

  • Natividad E, Castro M, Mediano A (2011) Adiabatic magnetothermia makes possible the study of the temperature dependence of the heat dissipated by magnetic nanoparticles under alternating magnetic fields. Appl Phys Lett 98:243119

    Article  Google Scholar 

  • Ortega D, Pankhurst QA (2013) Magnetic hyperthermia. Nanoscince 1:60–88

    Google Scholar 

  • Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374

    Article  Google Scholar 

  • Schaub NJ, Rende D, Yuan Y, Gilbert RJ, Borca-Tasciuc al. DA (2014) Reduced astrocyte viability at physiological temperatures from magnetically activated iron oxide nanoparticles. Chem Res Toxicol 27(12):2023–2035

    Article  Google Scholar 

  • Schinteie G, Palade P, Vekas L, Iacob N, Bartha C, Kuncser V (2013) Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications. J Phys D 46:395501

    Article  Google Scholar 

  • Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915

    Article  Google Scholar 

  • Teran FJ et al (2012) Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions. Appl Phys Lett 101:062413

    Article  Google Scholar 

  • Vafaei S, Borca-Tasciuc T (2014) Role of nanoparticles on nanofluid boiling phenomenon: nanoparticle deposition. Chem Eng Res Des 92:842–856

    Article  Google Scholar 

  • Wang DC et al (2012) Hyperthermia Promotes Apoptosis and Suppresses Invasion in C6 Rat Glioma Cells. Asian Pac J Cancer Prev 13(7):3239–3245

    Article  Google Scholar 

  • Wust P et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497

    Article  Google Scholar 

  • Zhao Q et al (2012) Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2(1):113–121

    Article  Google Scholar 

Download references

Acknowledgements

The financial support through the exploratory research project PCE IDEI 75/2011 provided by the Romanian National Authority for Scientific Research is highly acknowledged. The FF samples investigated in this work were provided by Prof. Dr. Ladislau Vekas from the Laboratory of ferrofluids, Timisoara (Romania). Nicusor Iacob was supported by the strategic grant POSDRU/159/1.5/S/137750, “Project Doctoral and Postdoctoral programs support for increased competitiveness in Exact Sciences research” cofinanced by the European Social Found within the Sectorial Operational Program Human Resources Development 2007—2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kuncser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacob, N., Schinteie, G., Palade, P. et al. Approach for an improved experimental evaluation of the specific absorption rate in magnetic fluid hyperthermia. J Nanopart Res 17, 190 (2015). https://doi.org/10.1007/s11051-015-2997-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2997-2

Keywords

Navigation