Skip to main content

Advertisement

Log in

One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A facile one-pot solvothermal method has been developed to synthesize CoNiO2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO2 nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

Graphical Abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J-G, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1(2):195–220. doi:10.1016/j.nanoen.2011.11.006

    Article  Google Scholar 

  • Carriazo D, Patino J, Gutierrez MC, Ferrer ML, Monte Fd (2013) Microwave-assisted synthesis of NiCo2O4–graphene oxide nanocomposites suitable as electrodes for supercapacitors. RSC Adv 3:13690–13695. doi:10.1039/c3ra42610f

    Article  Google Scholar 

  • Chen GZ (2013) Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog Nat Sci 23(3):245–255. doi:10.1016/j.pnsc.2013.04.001

    Article  Google Scholar 

  • Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66(1–2):1–14. doi:10.1016/S0378-7753(96)02474-3

    Article  Google Scholar 

  • Dai C-S, Chien P-Y, Lin J-Y, Chou S-W, Wu W-K, Li P-H, Wu K-Y, Lin T-W (2013) Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl Mater Interfaces 5(22):12168–12174. doi:10.1021/am404196s

    Article  Google Scholar 

  • Demarconnay L, Raymundo-Piñero E, Béguin F (2011) Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor. J Power Sources 196(1):580–586. doi:10.1016/j.jpowsour.2010.06.013

    Article  Google Scholar 

  • Du W, Qian X, Yin J, Gong Q (2007) Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy. Chem A Eur J 13(31):8840–8846. doi:10.1002/chem.200700618

    Article  Google Scholar 

  • Du W, Zhu Z, Wang Y, Liu J, Yang W, Qian X, Pang H (2014) One-step synthesis of CoNi2S4 nanoparticles for supercapacitor electrodes. RSC Adv 4(14):6998–7002. doi:10.1039/C3RA46805D

    Article  Google Scholar 

  • Du W, Zhu Z, Xu Y, Zhang Z, Xiong X, Geng P, Pang H (2015) High-performance asymmetric full-cell supercapacitors based on CoNi2S4 nanoparticles and activated carbon. J Solid State Electrochem 19(7):2177–2188. doi:10.1007/s10008-015-2858-z

    Article  Google Scholar 

  • Hu W, Chen R, Xie W, Zou L, Qin N, Bao D (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Interfaces 6(21):19318–19326. doi:10.1021/am5053784

    Article  Google Scholar 

  • Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7(7):6237–6243. doi:10.1021/nn4021955

    Article  Google Scholar 

  • Jiang H, Ma J, Li C (2012a) Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chem Commun 48(37):4465–4467. doi:10.1039/C2CC31418E

    Article  Google Scholar 

  • Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012b) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24(38):5166–5180. doi:10.1002/adma.201202146

    Article  Google Scholar 

  • Khomenko V, Frackowiak E, Béguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50(12):2499–2506. doi:10.1016/j.electacta.2004.10.078

    Article  Google Scholar 

  • Kong L-B, Liu M, Lang J-W, Luo Y-C, Kang L (2009) Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon. J Electrochem Soc 156:A1000–A1004. doi:10.1149/1.3236500

    Article  Google Scholar 

  • Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  • Lavela P, Ortiz GF, Tirado JL, Zhecheva E, Stoyanova R, Ivanova S (2007) High-performance transition metal mixed oxides in conversion electrodes: a combined spectroscopic and electrochemical study. J Phys Chem C 111(38):14238–14246. doi:10.1021/jp074142s

    Article  Google Scholar 

  • Liang Y, Wang H, Zhou J, Li Y, Wang J, Regier T, Dai H (2012) Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134(7):3517–3523. doi:10.1021/ja210924t

    Article  Google Scholar 

  • Liang J, Fan Z, Chen S, Ding S, Yang G (2014) Hierarchical NiCo2O4 nanosheets@halloysite nanotubes with ultrahigh capacitance and long cycle stability as electrochemical pseudocapacitor materials. Chem Mater 26(15):4354–4360. doi:10.1021/cm500786a

    Article  Google Scholar 

  • Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868. doi:10.1021/nl102661q

    Article  Google Scholar 

  • Liu Y, Zhao Y, Yu Y, Ahmad M, Sun H (2014a) Facile synthesis of single-crystal mesoporous CoNiO2 nanosheets assembled flowers as anode materials for lithium-ion batteries. Electrochim Acta 132:404–409. doi:10.1016/j.electacta.2014.03.155

    Article  Google Scholar 

  • Liu Y, Zhao Y, Yu Y, Li J, Ahmad M, Sun H (2014b) Hierarchical CoNiO2 structures assembled from mesoporous nanosheets with tunable porosity and their application as lithium-ion battery electrodes. New J Chem 38(7):3084–3091. doi:10.1039/C4NJ00258J

    Article  Google Scholar 

  • Lu X, Yu M, Zhai T, Wang G, Xie S, Liu T, Liang C, Tong Y, Li Y (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13(6):2628–2633. doi:10.1021/nl400760a

    Article  Google Scholar 

  • Mai L-Q, Minhas-Khan A, Tian X, Hercule KM, Zhao Y-L, Lin X, Xu X (2013) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun 4:2923–2929. doi:10.1038/ncomms3923

    Article  Google Scholar 

  • Naoi K, Naoi W, Aoyagi S, J-i Miyamoto, Kamino T (2013) New generation “nanohybrid supercapacitor”. Acc Chem Res 46(5):1075–1083. doi:10.1021/ar200308h

    Article  Google Scholar 

  • Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater. doi:10.1002/adma.201004134

    Google Scholar 

  • Pell WG, Conway BE (2004) Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes. J Power Sources 136(2):334–345. doi:10.1016/j.jpowsour.2004.03.021

    Article  Google Scholar 

  • Peng S, Li L, Li C, Tan H, Cai R, Yu H, Mhaisalkar S, Srinivasan M, Ramakrishna S, Yan Q (2013) In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chem Commun 49(86):10178–10180. doi:10.1039/c3cc46034g

    Article  Google Scholar 

  • Peng Z, Jia D, Tang J, Wang Y, Wang Y, Zhang L, Zheng G (2014) CoNiO2/TiN–TiOxNy composites for ultrahigh electrochemical energy storage and simultaneous glucose sensing. J Mater Chem A 2(28):10904–10909. doi:10.1039/C4TA00875H

    Article  Google Scholar 

  • Simon P, Gogotsi Y (2012) Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc Chem Res 46(5):1094–1103. doi:10.1021/ar200306b

    Article  Google Scholar 

  • Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211. doi:10.1126/science.1249625

    Article  Google Scholar 

  • Tang C, Tang Z, Gong H (2012) Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors. J Electrochem Soc 159(5):A651–A656. doi:10.1149/2.074205jes

    Article  Google Scholar 

  • Vangari M, Pryor T, Jiang L (2012) Supercapacitors: review of materials and fabrication methods. J Energy Eng 139(2):72–79. doi:10.1061/(ASCE)EY.1943-7897.0000102

    Article  Google Scholar 

  • Wan H, Jiang J, Yu J, Xu K, Miao L, Zhang L, Chen H, Ruan Y (2013) NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm 15(38):7649–7651. doi:10.1039/c3ce41243a

    Article  Google Scholar 

  • Wang Y-G, Wang Z-D, Xia Y-Y (2005) An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim Acta 50(28):5641–5646. doi:10.1016/j.electacta.2005.03.042

    Article  Google Scholar 

  • Wang G, Zhang L, Zhang J (2012a) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828. doi:10.1039/C1CS15060J

    Article  Google Scholar 

  • Wang GP, Zhang L, Zhang JJ (2012b) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828. doi:10.1039/c1cs15060j

    Article  Google Scholar 

  • Wang X, Han XD, Lim M, Singh N, Gan CL, Jan M, Lee PS (2012c) Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J Phys Chem C 116(23):12448–12454. doi:10.1021/jp3028353

    Article  Google Scholar 

  • Wu HB, Pang H, Lou XW (2013) Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy Environ Sci 6(12):3619–3626. doi:10.1039/C3EE42101E

    Article  Google Scholar 

  • Xie L-J, Wu J-F, Chen C-M, Zhang C-M, Wan L, Wang J-L, Kong Q-Q, Lv C-X, Li K-X, Sun G-H (2013) A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide–cobalt oxide nanocomposite anode. J Power Sources 242:148–156. doi:10.1016/j.jpowsour.2013.05.081

    Article  Google Scholar 

  • Xiong W, Gao Y, Wu X, Hu X, Lan D, Chen Y, Pu X, Zeng Y, Su J, Zhu Z (2014) Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance supercapacitor. ACS Appl Mater Interfaces 6(21):19416–19423. doi:10.1021/am5055228

    Article  Google Scholar 

  • Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641. doi:10.1002/adfm.201102839

    Article  Google Scholar 

  • Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14(2):731–736. doi:10.1021/nl404008e

    Article  Google Scholar 

  • Yuan CZ, Li JY, Hou LR, Yang L, Shen LF, Zhang XG (2012) Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors. J Mater Chem 22(31):16084–16090. doi:10.1039/c2jm32351f

    Article  Google Scholar 

  • Zhang GQ, Wu HB, Hoster HE, Chan-Park MB, Lou XW (2012) Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ Sci 5(11):9453–9456. doi:10.1039/C2EE22572G

    Article  Google Scholar 

  • Zhang X, Yu S, He W, Uyama H, Xie Q, Zhang L, Yang F (2014) Electrochemical sensor based on carbon-supported NiCoO2 nanoparticles for selective detection of ascorbic acid. Biosens Bioelectron 55:446–451. doi:10.1016/j.bios.2013.12.046

    Article  Google Scholar 

  • Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72. doi:10.1039/c2nr32040a

    Article  Google Scholar 

  • Zhu FL, Zhao JX, Cheng YL, Li HB, Yan XB (2012) Magnetic and electrochemical properties of NiCo2O4 microbelts fabricated by electrospinning. Acta Phys-Chim Sin 28(12):2874–2878. doi:10.3866/pku.whxb201209063

    Google Scholar 

  • Zhu Y, Wu Z, Jing M, Hou H, Yang Y, Zhang Y, Yang X, Song W, Jia X, Ji X (2015) Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J Mater Chem A 3(2):866–877. doi:10.1039/c4ta05507a

    Article  Google Scholar 

  • Zou R, Xu K, Wang T, He G, Liu Q, Liu X, Zhang Z, Hu J (2013) Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. J Mater Chem A 1(30):8560–8566. doi:10.1039/c3ta11361b

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (U1404203), Key Research Projects from Science and Technology Department of Henan Province, P. R. China (092102210253), Science and Technology Problem of Science and Technology Bureau of Anyang City, (Anke[2009]-34#-Industrial research-91), National Students’ Innovation and Entrepreneurship Training Program of China (201410479011), and University Students’ Innovation Fund Project of Anyang Normal University (ASCX/2015-Z17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Gao, Y., Tian, Q. et al. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors. J Nanopart Res 17, 368 (2015). https://doi.org/10.1007/s11051-015-3179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3179-y

Keywords

Navigation