Skip to main content
Log in

Characteristics of 5 mol% Ce3+-doped barium titanate nanowires prepared by a combined route involving sol–gel chemistry and polycarbonate membrane-templated process

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ba0.95Ce0.05Ti0.9875O3 nanowires were fabricated by sol–gel method using as template a polycarbonate membrane with channels of 100 nm diameter. FE-SEM analyses showed that continuous gel wires of length up to 17 µm and an average diameter of 81 nm, were obtained. After calcination at 700 °C for 1 h, these green 1D nanostructures were converted into well-crystallised wires with an average diameter of 59.7 nm, as high-resolution transmission electron microscopy and selected area electron diffraction indicated. The piezoelectric activity of the Ba0.95Ce0.05Ti0.9875O3 nanowires was investigated using piezoresponse force microscopy (PFM) correlated with atomic force microscopy. The results of PFM measurements indicated that the wires exhibit a significant fraction of ferroelectric domains larger than the grains size and a good piezoelectric response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bao N, Shen L, Srinivasan G, Yanagisawa K, Gupta A (2008) Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: from nanotubes and nanowires to ordered nanostructures. J Phys Chem C 112:8634–8642

    Article  Google Scholar 

  • Bao N, Shen L, Gupta A, Tatarenko A, Srinivasan G, Yanagisawa K (2009) Size-controlled one-dimensional monocrystalline BaTiO3 nanostructures. Appl Phys Lett 94:253109

    Article  Google Scholar 

  • Buscaglia MT, Viviani M, Buscaglia V, Mitoseriu L, Testino A, Nanni P, Zhao Z, Nygren M, Harnagea C, Piazza D, Galassi C (2006) High dielectric constant and frozen macroscopic polarization in dense nanocrystalline BaTiO3 ceramics. Phys Rev B 73:064114

    Article  Google Scholar 

  • Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133–2137

    Article  Google Scholar 

  • Fu C, Cai W, Zhou L, Chen H, Liu Z (2009) Synthesis of self-assembly BaTiO3 nanowire by sol–gel and microwave method. Appl Surf Sci 255:9444–9446

    Article  Google Scholar 

  • Gu G, Zheng B, Han WQ, Roth S, Liu J (2002) Tungsten oxide nanowires on tungsten substrates. Nano Lett 2:849–851

    Article  Google Scholar 

  • He Y, Zhang T, Zheng W, Wang R, Liu X, Xia Y, Jinwei Zhao J (2010) Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning. Sens Actuators B 146:98–102

    Article  Google Scholar 

  • Hennings DFK, Schreinemacher B, Schreinemacher H (1994) High-permittivity dielectric ceramics with high endurance. J Eur Ceram Soc 13:81–88

    Article  Google Scholar 

  • Hiramatsu T, Tamura T, Wada N, Tamura H, Sakabe Y (2005) Effects of grain boundary on dielectric properties in fine-grained BaTiO3 ceramics. Mater Sci Eng 120:55–58

    Article  Google Scholar 

  • Hong J, Fang D (2008) Size-dependent ferroelectric behaviors of BaTiO3 nanowires. Appl Phys Lett 92:012906

    Article  Google Scholar 

  • Hwang JH, Han YH (2001) Electrical properties of cerium-doped BaTiO3. J Am Ceram Soc 84:1750–1754

    Article  Google Scholar 

  • Kalyani V, Vasile BS, Ianculescu A, Buscaglia MT, Buscaglia V, Nanni P (2012) Hydrothermal synthesis of SrTiO3 mesocrystals: single crystal to mesocrystal transformation induced by topochemical reactions. Cryst Growth Des 12:4450–4456

    Article  Google Scholar 

  • Kim J, Kim D, Noh T, Ahn B, Lee H (2011) Microstructure and thermal properties of dysprosium and thulium co-doped barium titanate ceramics for high performance multilayer ceramic capacitors. Mater Sci Eng 176:1227–1231

    Article  Google Scholar 

  • Kwei GH, Lawson AC, Billinge SJL, Cheong SW (1993) Structures of the ferroelectric phases of barium titanate. J Phys Chem 97:2368–2377

    Article  Google Scholar 

  • Li D, Xia YN (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3:555–560

    Article  Google Scholar 

  • McCann JT, Chen JIL, Li D, Ye ZG, Xia YN (2006) Electrospinning of polycrystalline barium titanate nanofibres with controllable morphology and alignment. Chem Phys Lett 424:162–166

    Article  Google Scholar 

  • Thiaville A, Miltat J (1999) Small is beautiful. Science 284:1939–1940

    Article  Google Scholar 

  • Tian Z, Wang X, Shu L, Wang T, Song TH, Gui Z, Li L (2009) Preparation of nano BaTiO3-based ceramics for multilayer ceramic capacitor application by chemical coating method. J Am Ceram Soc 92:830–833

    Article  Google Scholar 

  • Tsurumi T, Hoshina T, Takeda H, Mizuno Y, Chazono H (2009) Size effect of barium titanate and computer-aided design of multilayered ceramic capacitors. IEEE Trans Ultrason Ferroelectr Freq Contr 56:1513–1522

    Article  Google Scholar 

  • Urban JJ, Yun WS, Gu Q, Park H (2002) Synthesis of single crystalline perovskite nanorods composed of barium titanate and strontium titanate. J Am Chem Soc 124:1186–1187

    Article  Google Scholar 

  • Urban JJ, Spanier JE, Ouyang L, Yun WS, Park H (2003) Single-crystalline barium titanate nanowires. Adv Mater 15:423–426

    Article  Google Scholar 

  • Wang ZL (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater 12:1295–1298

    Article  Google Scholar 

  • Wang Z, Suryavanshi AP, Yu MF (2006) Ferroelectric and piezoelectric behaviors of individual single crystalline BaTiO3 nanowire under direct axial electric biasing. Appl Phys Lett 89:082903

    Article  Google Scholar 

  • Wang ZY, Hu J, Suryavanshi AP, Yum K, Yu MF (2007) Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load. Nano Lett 7:2966–2969

    Article  Google Scholar 

  • Woodward DI, Reaney IM, Yang GY, Dickey EC (2004) Vacancy ordering in reduced barium titanate. Appl Phys Lett 84:4650–4652

    Article  Google Scholar 

  • Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan HQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389

    Article  Google Scholar 

  • Yang J, Zhang J, Liang C, Wang M, Zhao P, Liu M, Liu J, Che R (2013) Ultrathin BaTiO3 nanowires with high aspect ratio: a simple onestep hydrothermal synthesis and their strong microwave absorption. ACS Appl Mater Interfaces 5:7146–7151

    Article  Google Scholar 

  • Yuh J, Nino JC, Sigmund WM (2005) Synthesis of barium titanate (BaTiO3) nanofibres via electrospinning. Mater Lett 59:3645–3647

    Article  Google Scholar 

  • Yuh J, Perez L, Sigmund WM, Nino JC (2007) Sol–gel based synthesis of complex oxide nanofibers. J Sol–gel Sci Technol 42:323–329

    Article  Google Scholar 

  • Yun WS, Urban JJ, Gu Q, Park H (2002) Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano Lett 5:447–450

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Romanian CNCS-UEFISCDI Project No. PN-II-ID-PCE-2011-3-0668 and by the Sectorial Operational Programme Human Resources Development 2007–2013 of the Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/132397 (ExcelDOC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelina-Carmen Ianculescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilescu, CA., Trupina, L., Vasile, B.S. et al. Characteristics of 5 mol% Ce3+-doped barium titanate nanowires prepared by a combined route involving sol–gel chemistry and polycarbonate membrane-templated process. J Nanopart Res 17, 434 (2015). https://doi.org/10.1007/s11051-015-3241-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3241-9

Keywords

Navigation