Skip to main content
Log in

Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We synthesize Zn-substituted cobalt ferrite (Zn x Co1−x Fe2O4, with 0 ≤ x ≤ 1) magnetic nanoparticles by a hydrothermal co-precipitation method in alkaline medium. The chemical composition is evaluated by atomic absorption spectroscopy and energy-dispersive X-ray spectroscopy techniques. The structure and morphology of the nanopaticles are investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. XRD Rietveld refinements reveal the cation distribution among the tetrahedral (A) and octahedral (B) sites. It shows that up to x ~0.5 zinc ions occupy preferably A-sites, above which Zn ions begin also a gradual occupancy of B-sites. TEM images show nanoparticles with different shapes varying from spheres, cubes, to octahedrons. Hysteresis loop properties are studied at 300 and 5 K. These properties are strongly influenced by the Zn and Co proportion in the nanoparticle composition. At 300 K, only samples with high Co content present hysteresis. At 5 K, the reduced remanent magnetization ratio (M R/M S) and the coercivity (H C) suggest that nanoparticles with x < 0.5 have cubic anisotropy. A kink on the hysteresis loop, close to the remanence, is observed at low temperature. This feature is presumably associated to interplay between hard and soft anisotropy regimes in the powder samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdallah HMI, Moyo T, Ezekiel IP, Osman NSE (2014) Structural and magnetic properties of Sr0.5Co0.5Fe2O4 nanoferrite. J Magn Magn Mater 365:83–87

    Article  Google Scholar 

  • Airimioaei M, Ciomaga C, Apostolescu N et al (2011) Synthesis and functional properties of the Ni1−xMnxFe2O4 ferrites. J Alloys Compd 509:8065–8072

    Article  Google Scholar 

  • Alves CR, Aquino R, Depeyrot J, Tourinho FA, Dubois E, Perzynski R (2007) Superparamagnetic relaxation evidences large surface contribution for the magnetic anisotropy of MnFe204 nanoparticles of ferrofluids. J Mater Sci 42:2297–2303

    Article  Google Scholar 

  • Ammar S, Helfen A, Jouini N et al (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J Mater Chem 11:186–192

    Article  Google Scholar 

  • Aquino R, Depeyrot J, Sousa MH, Tourinho FA, Dubois E, Perzynski R (2005) Magnetization temperature dependence and freezing of surface spins in magnetic fluids based on ferrite nanoparticles. Phys Rev B 72:184435

    Article  Google Scholar 

  • Arulmurugan R, Vaidyanathan G, Sendhilnathan S, Jeyadevan B (2005a) Co–Zn ferrite nanoparticles for ferrofluid preparation: study on magnetic properties. Phys B 363:225–231

    Article  Google Scholar 

  • Arulmurugan R, Jeyadevan B, Vaidyanathan G, Sendhilnathan S (2005b) Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation. J Magn Magn Mater 288:470–477

    Article  Google Scholar 

  • Astefanoaei I, Dumitru I, Chiriac H, Stancu A (2014) Controlling temperature in magnetic hyperthermia with low Curie temperature particles. J Appl Phys 115:17B531

    Article  Google Scholar 

  • Bayoumi W (2007) Structural and electrical properties of zinc-substituted cobalt ferrite. J Mater Sci 42:8254–8261

    Article  Google Scholar 

  • Beji Z, Hanini A, Smiri LS et al (2010) Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells. Chem Mater 22:5420–5429

    Article  Google Scholar 

  • Bhattacharjee K, Ghosh C, Mitra M et al (2011) Novel synthesis of NixZn1−xFe2O4 (0 ≤ x ≤ 1) nanoparticles and their dielectric properties. J Nanopart Res 13:739–750

    Article  Google Scholar 

  • Bullita S, Casu A, Casula MF et al (2014) ZnFe2O4 nanoparticles dispersed in a highly porous silica aerogel matrix: a magnetic study. Phys Chem Chem Phys 16:4843

    Article  Google Scholar 

  • Campos AFC, Aquino R, Tourinho FA, Paula FLO, Depeyrot J (2013) Influence of the spatial confinement at nanoscale on the structural surface charging in magnetic nanocolloids. Eur Phys J E 36:42

    Article  Google Scholar 

  • Chen D, Tang X, Wu J et al (2011) Effect of grain size on the magnetic properties of superparamagnetic Ni0.5Zn0.5Fe2O4 nanoparticles by co-precipitation process. J Magn Magn Mater 323:1717–1721

    Article  Google Scholar 

  • Coey JMD (1971) Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys Rev Lett 27(17):1140–1142

    Article  Google Scholar 

  • Coey JMD (1996) Rare earth permanent magnetism, 1st edn. Wiley, New York

    Google Scholar 

  • Cullity BD (1972) Introduction to Magnetic Materials. Addison-Wesley, New York

    Google Scholar 

  • Daou T, Pourroy G, Begin-Colin S et al (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18:4399–4404

    Article  Google Scholar 

  • Fantechi E, Innocenti C, Albino M, Lottini E, Sangregorio C (2015) Influence of cobalt doping on the hyperthermia efficiency of magnetite nanoparticles. J Magn Magn Mater 380:365–371

    Article  Google Scholar 

  • Franco A, Silva FC (2013) Effect of the Zn content in the magnetic properties of Co1−xZnxFe2O4 mixed ferrites. J Appl Phys 17:17B513

    Google Scholar 

  • Gazeau F, Bacri JC, Gendron F, Perzynski R, Raikher YL, Stepanov VI, Dubois E (1998) Magnetic resonance of ferrite nanoparticles: evidence of surface effects. J Magn Magn Mater 186:175–187

    Article  Google Scholar 

  • Ghasemi A, Šepelák V, Shirsath SE, Liu X, Morisako A (2011) Mössbauer spectroscopy and magnetic characteristics of Zn1−xCoxFe2O4 (x = 0–1) nanoparticles. J Appl Phys 109:07A512

    Google Scholar 

  • Gomes JA, Sousa MH, Tourinho FA, Aquino R, Depeyrot J, Dubois E, Perzynski R (2008) Synthesis of core-shell ferrite nanoparticles for ferrofluids: chemical and magnetic analysis. J Phys Chem C 112:6220–6227

    Article  Google Scholar 

  • Gomes JA, Azevedo GM, Depeyrot J et al (2012) Structural, chemical, and magnetic investigations of core–shell zinc ferrite nanoparticles. J Phys Chem C 116:24281–24291

    Article  Google Scholar 

  • Goya G, Grazu V, Ibarra M (2008) Magnetic nanoparticles for cancer therapy. Curr Nanosci 4:1–16

    Article  Google Scholar 

  • Gözüak F, Köseoğlu Y, Baykal A, Kavas H (2009) Synthesis and characterization of CoxZn1−xFe2O4 magnetic nanoparticles via a PEG-assisted route. J Magn Magn Mater 321:2170–2177

    Article  Google Scholar 

  • Gul I, Abbasi A, Amin F, Anis-ur-Rehman M, Maqsood A (2007) Structural, magnetic and electrical properties of Co1−xZnxFe2O4 synthesized by co-precipitation method. J Magn Magn Mater 311:494–499

    Article  Google Scholar 

  • Gul I, Ahmed W, Maqsood A (2008) Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J Magn Magn Mater 320:270–275

    Article  Google Scholar 

  • Hayek SS, Sharma R, Kwon S, Sharma A, Chen CJ (2008) Temperature and magnetic resonance characteristics of zinc, manganese, gadolinium, gold, iron magnetic nanoparticles and cytokine synergy in hyperthermia. J Biomed Sci Eng 1:182–189

    Article  Google Scholar 

  • Hergt R, Dutz S (2007) Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311:187–191

    Article  Google Scholar 

  • Hochepied JF, Pileni MP (2000) Magnetic properties of mixed cobalt–zinc ferrite nanoparticles. J Appl Phys 87:2472

    Article  Google Scholar 

  • Jamon D, Donatini F, Siblini A, Royer F, Perzynski R, Cabuil V, Neveu S (2009) Experimental investigation on the magneto-optic effects of ferrofluids via dynamic measurements. J Magn Magn Mater 321:1148–1154

    Article  Google Scholar 

  • Jeun M, Moon SJ, Kobayashi H et al (2010) Effects of Mn concentration on the ac magnetically induced heating characteristics of superparamagnetic MnxZn1−xFe2O4 nanoparticles for hyperthermia. Appl Phys Lett 96:202511–202513

    Article  Google Scholar 

  • Jnaneshwara D, Avadhani D, Daruka B et al (2014) Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J Alloys Compd 587:50–58

    Article  Google Scholar 

  • Kazin A, Rumyantseva M, Prusakov V, Suzdalev I, Gaskov A (2012) Cation distribution in nanocrystalline NixZn1−xFe2O4 spinel ferrites. Inorg Mater 48:525–530

    Article  Google Scholar 

  • Kodama RH, Makhlouf SA, Berkowitz AE (1997) Finite size effects in antiferromagnetic NiO nanoparticles. Phys Rev Lett 79:1393

    Article  Google Scholar 

  • Köseoğlu Y, Baykal A, Gözüak F, Kavas H (2009) Structural and magnetic properties of CoxZn1−xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28:2887–2892

    Article  Google Scholar 

  • Kuznetsov AY, Mel’nikov VN, Gyrdasova OI, Bazuev GV, Novikov SI (2011) Synthesis of spinel Ni0.75Zn0.25Fe2O4 and the properties of a coating obtained by gas-flame spraying. Theor Found Chem Eng 45:455–460

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2004) General structure analysis system, Los Alamos National Laboratory. ftp://ftp.lanl.gov/public/gsas

  • Lee JH, Jang J, Choi J, Ho Moon S, Noh S, Kim J, Kim J, Kim I, Park K, Cheon K (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol Lett 6:418–422

    Article  Google Scholar 

  • López-Ortega A, Lottini E, de Fernandez CJ, Sangregorio C (2015) Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem Mater 27:4048

    Article  Google Scholar 

  • Manova E, Kunev B, Paneva D et al (2004) Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem Mater 16:5689–5696

    Article  Google Scholar 

  • Mazen SA, Abu-Elsaad NI (2012) Structural and some magnetic properties of manganese-substituted lithium ferrites. J Magn Magn Mater 324:3366

    Article  Google Scholar 

  • Néel L (1948) Ferromagnetism and Anti-Ferromagnetism. Ann Phys 3:137

    Google Scholar 

  • Néel L (1954) Anisotropie magnétique superficielle et surstructures d’orientation. J Phys Radium 15:225–239

    Article  Google Scholar 

  • Obaidat IM, Issa B, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5:63–89

    Article  Google Scholar 

  • Poddar P, Gass J, Rebar DJ, Srinath S et al (2006) Magnetocaloric effect in ferrite nanoparticles. J Magn Magn Mater 307:227–231

    Article  Google Scholar 

  • Sanpo N, Berndt CC, Wen C, Wang J (2013) Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater 9:5830–5837

    Article  Google Scholar 

  • Shannon RD (1976) Crystal physics, diffraction, theoretical and general crystallography. Acta Crystallogr A 32:751

    Article  Google Scholar 

  • Sharifi I, Shokrollahi H (2012) Nanostructural, magnetic and Mössbauer studies of nanosized Co1−xZnxFe2O4 synthesized by co-precipitation. J Magn Magn Mater 324:2397–2403

    Article  Google Scholar 

  • Silva FG, Aquino R, Tourinho FA, Stepanov VI, Raikher YuL, Perzynski R, Depeyrot J (2013) The role of magnetic interactions in exchange bias properties of MnFe2O4@-γ-Fe2O3 core/shell nanoparticles. J Phys D Appl Phys 46:285003

    Article  Google Scholar 

  • Sousa EC, Rechenberg HR, Depeyrot J, Gomes JA, Aquino R, Tourinho FA, Dupuis V, Perzynski R (2009) In-field Mossbauer study of disordered surface spins in core/shell ferrite nanoparticles. J Appl Phys 106:093901–093907

    Article  Google Scholar 

  • Stewart SJ, Figueroa SJA, Ramallo-López JM et al (2007) Cationic exchange in nanosized ZnFe2O4 spinel revealed by experimental and simulated near-edge absorption structure. Phys Rev B 75:073408

    Article  Google Scholar 

  • Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Trans R Soc Lond A 240(826):599–642

    Article  Google Scholar 

  • Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82:269–280

    Article  Google Scholar 

  • Taillades P, Villette C, Rousset A, Kulkarni GU, Kannan KR, Rao CNR, Lenglet MJ (1998) Cation migration and coercivity in mixed copper-cobalt spinel ferrite powders. Solid State Chem 141:56–63

    Article  Google Scholar 

  • Tan X, Li G, Zhao Y, Hu C (2010) Effect of preparation method on the surface properties and activity of Ni0.7Cu0.3Fe2O4 nanoparticles. J Alloys Compd 493:55–63

    Article  Google Scholar 

  • Topkaya R, Baykal A, Demir A (2013) Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J Nanopart Res 15:1359

    Article  Google Scholar 

  • Vaidyanathan G, Sendhilnathan S (2008a) Characterization of Co1−xZnxFe2O4 nanoparticles synthesized by co-precipitation method. Phys B 403:2157–2167

    Article  Google Scholar 

  • Vaidyanathan G, Sendhilnathan S (2008b) Synthesis and magnetic properties of Co–Zn magnetic fluid. J Magn Magn Mater 320:803–805

    Article  Google Scholar 

  • Vaidyanathan G, Sendhilnathan S, Arulmurugan R (2007) Structural and magnetic properties of Co1−xZnxFe2O4 nanoparticles by co-precipitation method. J Magn Magn Mater 313:293–299

    Article  Google Scholar 

  • Vallejo-Fernandez G, O’Grady K (2013) Effect of the distribution of anisotropy constants on hysteresis losses for magnetic hyperthermia applications. Appl Phys Lett 103:142417

    Article  Google Scholar 

  • Vallejo-Fernandez G, Whear O, Roca AG et al (2013) Mechanisms of hyperthermia in magnetic nanoparticles. J Phys D 46:312001

    Article  Google Scholar 

  • Vázquez-Vázquez C, Lopez-Quintela MA, Bujan-Nunez MC, Rivas J (2011) Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles. J Nanopart Res 13:1663–1676

    Article  Google Scholar 

  • Vestal CR, Zhang ZJ (2003) Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J Am Chem Soc 125:9828–9833

    Article  Google Scholar 

  • Wang ZL, Feng X (2003) Polyhedral Shapes of CeO2 Nanoparticles. J Phys Chem B 107:13563

    Article  Google Scholar 

  • Xuan Y, Lian W (2011) Electronic cooling using an automatic energy transport device based on thermomagnetic effect. Appl Therm Eng 31:1487–1494

    Article  Google Scholar 

  • Xuan Y, Li Q, Yang G (2007) Synthesis and magnetic properties of Mn–Zn ferrite nanoparticles. J Magn Magn Mater 312:464–469

    Article  Google Scholar 

  • Yafet Y, Kittle C (1952) X-ray diffraction and magnetic measurements of the Fe-Cr spinels. Phys Rev 87:290

    Article  Google Scholar 

  • Yaseneva P, Bowker M, Hutchings G (2011) Structural and magnetic properties of Zn-substituted cobalt ferrites prepared by co-precipitation method. Phys Chem Chem Phys 13:18609–18614

    Article  Google Scholar 

  • Yu YS, Mendoza-Garcia A, Ning B, Sun SH (2013) Cobalt-substituted magnetite nanoparticles and their assembly into ferrrimagnetic nanoparticle arrays. Adv Mater 25:3090–3094

    Article  Google Scholar 

  • Zeng H, Li J, Liu JP, Wang ZL, Sun SH (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420:395–398

    Article  Google Scholar 

Download references

Acknowledgments

We thank S. Casale for help in TEM and HRTEM measurements in UPMC—Paris 6, France. We also thank Dr. T. Oliveira dos Santos and Laboratório Multiusuário de Microscopia de Alta Resolução (LabMic) of University of Goiás, Brazil, for HRTEM and EDS measurements. Thanks to MSc A. L. Moreira and the LNLS Brazilian Synchrotron D12A-XRD1 proposal 16164. This work was supported by the contracts CAPES/COFECUB No. 714/11, together with the Brazilian agencies CAPES, FAP/DF, and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Aquino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coppola, P., da Silva, F.G., Gomide, G. et al. Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties. J Nanopart Res 18, 138 (2016). https://doi.org/10.1007/s11051-016-3430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3430-1

Keywords

Navigation