Skip to main content
Log in

Direct synthesis of silver nanoparticles in ionic liquid

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ionic liquids have structural organization at nanoscale that can trigger the spontaneous ordering of structures in nanoscopic range. Due to this characteristic, several metal nanoparticles have been prepared in this media. In this paper, we describe the direct preparation of silver nanoparticles in the following imidazolium ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1,2-dimethyl-3-butylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and in citrate tetrabutylammonium, that is an ionic liquid that acts as solvent and reducing agent at the same time. We also evaluated the morphology of the nanoparticles and the stability of the dispersions. Spherical silver nanoparticles with surface Plasmon bands in the range of 400–430 nm were produced in all the ionic liquids, with the only exception for the 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide that produced a black precipitate. The best results were obtained by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and citrate tetrabutylammonium ionic liquids. The former resulted in concentrated spherical silver nanoparticles dispersion (ca. 1.0 mM of Ag) with diameters ranging from 6 to 12 nm and by adding polyvinylpyrrolidone (PVP) to the dispersions they became stable for at least 1 month. The citrate tetrabutylammonium ionic liquid produced even more concentrated dispersion of spherical silver nanoparticles with diameters ranging from 2 to 6 nm. These dispersions were quite stable without the need of PVP, since the Plasmon band in the electronic absorption spectra remained unaltered for months after the preparation. The citrate tetrabutylammonium ionic liquid offers a slow kinetic for the silver nanoparticle formation as the citrate is a milder reducing agent than borohydride.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An J, Wang DS, Luo QZ, Yuan XY (2009) Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid. Mater Sci Eng 29:1984–1989. doi:10.1016/j.msec.2009.03.015

    Article  Google Scholar 

  • Camilo FF, Kawano Y, Torresi RM (2007) Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochim Acta 52:6427–6437. doi:10.1016/j.electacta.2007.04.064

    Article  Google Scholar 

  • Choi S, Kim KS, Yeon SH, Cha JH, Lee H, Kin CJ, Yoo ID (2007) Fabrication of silver nanoparticles via self-regulated reduction by 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. Korean J Chem Eng 24:856–859. doi:10.1007/s11814-007-0054-2

    Article  Google Scholar 

  • Consorti CS, Suarez PAZ, Souza RF, Burrow RA, Farrar DH, Lough AJ, Loh W, Silva LHM, Dupont J (2005) Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. J Phys Chem B 109:4341–4349. doi:10.1021/jp0452709

    Article  Google Scholar 

  • Correa CM, Faez R, Bizeto MA, Camilo FF (2012) One-pot synthesis of a polyaniline-silver nanocomposite prepared in ionic liquid. RSC Adv 2:3088–3093. doi:10.1039/c2ra00992g

    Article  Google Scholar 

  • Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350. doi:10.1590/S0103-50532004000300002

    Article  Google Scholar 

  • Dupont J, Scholten JD (2010) On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem Soc Rev 39:1780–1804. doi:10.1039/b822551f

    Article  Google Scholar 

  • Dupont J, Suarez PAZ (2006) Physico-chemical processes in imidazolium ionic liquids. Phys Chem Chem Phys 8:2441–2452. doi:10.1039/b602046a

    Article  Google Scholar 

  • Dupont J, Suarez PAZ, Souza RF, Burrow RA, Kintzinger JP (2000) C–H-pi interactions in 1-n-butyl-3-methylimidazolium tetraphenylborate molten salt: solid and solution structures. Chem Eur J 6:2377–2381. doi:10.1002/1521-3765(20000703)6:13<2377:AID-CHEM2377>3.0.CO;2-L

    Article  Google Scholar 

  • Fages E, Pascual J, Fenollar O, García-Sanoguera D, Balart R (2011) Study of antibacterial properties of polypropylene filled with surfactant-coated silver nanoparticles. Polym Eng Sci 51:804–811. doi:10.1002/pen.21889

    Article  Google Scholar 

  • Gao JH, Gu HW, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107. doi:10.1021/ar9000026

    Article  Google Scholar 

  • Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed-Nanotechnol 8:37–45. doi:10.1016/j.nano.2011.05.007

    Article  Google Scholar 

  • Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576. doi:10.1021/cr1003248

    Article  Google Scholar 

  • Harada M, Yamada M, Kimura Y, Saijo K (2013) Influence of the organization of water-in-ionic liquid microemulsions on the size of silver particles during photoreduction. J Colloid Interface Sci 406:94–104. doi:10.1016/j.jcis.2013.05.068

    Article  Google Scholar 

  • Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706. doi:10.1002/adma.200400271

    Article  Google Scholar 

  • Iida M, Baba C, Inoue M, Yoshida H, Taguchi E, Furusho H (2008) Ionic liquids of bis(alkylethylenediamine)silver(I) salts and the formation of silver(0) nanoparticles from the ionic liquid system. Chem Eur J 14:5047–5056. doi:10.1002/chem.200701764

    Article  Google Scholar 

  • Ji QM, Acharya S, Richards GJ, Zhang SL, Vieaud J, Hill JP, Ariga K (2013) Alkyl imidazolium ionic-liquid-mediated formation of gold particle superstructures. Langmuir 29:7186–7194. doi:10.1021/la304503j

    Article  Google Scholar 

  • Kim TY, Kim WJ, Hong SH, Kim JE, Suh KS (2009) Ionic-liquid-assisted formation of silver nanowires. Angew Chem Int Ed 48:3806–3809. doi:10.1002/anie.200806379

    Article  Google Scholar 

  • Kim TY, Yeon JH, Kim SR, Kim CY, Shim JP, Suh KS (2011) Shape-controlled synthesis of silver crystals mediated by imidazolium-based ionic liquids. Phys Chem Chem Phys 13:16138–16141. doi:10.1039/c1cp20582j

    Article  Google Scholar 

  • Lazarus LL, Riche CT, Malmstadt N, Brutchey RL (2012) Effect of ionic liquid impurities on the synthesis of silver nanoparticles. Langmuir 28:5987–15993. doi:10.1021/la303617f

    Article  Google Scholar 

  • Li ZH, Jia Z, Luan YX, Mu TC (2008) Ionic liquids for synthesis of inorganic nanomaterials. Curr Opin Solid State Mater Sci 12:1–8. doi:10.1016/j.cossms.2009.01.002

    Article  Google Scholar 

  • Li XG, Ma XL, Sun J, Hung MR (2009) Powerful reactive sorption of silver(I) and mercury(II) onto poly(o-phenylenediamine) microparticles. Langmuir 25:1675–1684. doi:10.1021/la802410p

    Article  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010a) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122. doi:10.1007/s00253-009-2159-5

    Article  Google Scholar 

  • Li XG, Feng H, Huang MR (2010b) Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Chem Eur J 16:10113–10123. doi:10.1002/chem.201000506

    Article  Google Scholar 

  • Lu WW, Yao KS, Wang JJ, Yuan JL (2015) Ionic liquids-water interfacial preparation of triangular Ag nanoplates and their shape-dependent antibacterial activity. J Colloid Interface Sci 437:35–41. doi:10.1016/j.jcis.2014.09.001

    Article  Google Scholar 

  • Ma Z, Yu J, Dau S (2010) Preparation of inorganic materials using ionic liquids. Adv Mater 22:261–285. doi:10.1002/adma.200900603

    Article  Google Scholar 

  • Maity A, Jaffer SS, Das T, Ghosh P, Purkayastha P (2011) Orientation of a TICT probe trapped in the peripheral confined water created by ionic surfactant envelope around silver nanoparticles. Langmuir 27:4068–4075. doi:10.1021/la1048858

    Article  Google Scholar 

  • Maneerung T, Tokura T, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51. doi:10.1016/j.carbpol.2007.07.025

    Article  Google Scholar 

  • Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759. doi:10.1063/1.1462610

    Article  Google Scholar 

  • Monteiro MJ, Camilo FF, Ribeiro MCC, Torresi RM (2010) Ether-bond-containing ionic liquids and the relevance of the ether bond position to transport properties. J Phys Chem B 144:12488–12494. doi:10.1021/jp104419k

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. doi:10.1088/0957-4484/16/10/059

    Article  Google Scholar 

  • Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322–332. doi:10.1021/ed084p322

    Article  Google Scholar 

  • Nadagouda MN, Varma RS (2007) Room temperature bulk synthesis of silver nanocables wrapped with polypyrrole. Macromol Rapid Commun 28:2106–2111. doi:10.1002/marc.200700495

    Article  Google Scholar 

  • Neouze M-A (2010) About the interactions between nanoparticles and imidazolium moieties: emergence of original hybrid materials. J Mater Chem 20:9593–9607. doi:10.1039/c0jm00616e

    Article  Google Scholar 

  • Penchera D, Bryaskova R, Kantardjiev T (2012) Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Mater Sci Eng, C 32:2048–2051. doi:10.1016/j.msec.2012.05.016

    Article  Google Scholar 

  • Pillai Z, Kamat PV (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951. doi:10.1021/jp037018r

    Article  Google Scholar 

  • Redel E, Thomann R, Janiak C (2008) First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume. Inorg Chem 47:14–16. doi:10.1021/ic702071w

    Article  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592. doi:10.1039/b502142c

    Article  Google Scholar 

  • Saadeh SM, Yasseen Z, Sharif FA, Abu Shawish HM (2009) New room temperature ionic liquids with interesting ecotoxicological and antimicrobial properties. Ecotoxicol Environ Safe 72:1805–1809. doi:10.1016/j.ecoenv.2008.12.015

    Article  Google Scholar 

  • Setua P, Pramanik R, Sarkar S, Ghatak C, Rao VG, Sarkar N, Das SK (2011) Synthesis of silver nanoparticle in imidazolium and pyrolidium based ionic liquid reverse micelles: a step forward in nanostructure inorganic material in room temperature ionic liquid field. J Mol Liq 162:33–37. doi:10.1016/j.molliq.2011.05.015

    Article  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96. doi:10.1016/j.cis.2008.09.002

    Article  Google Scholar 

  • Soni SS, Vekariya RL, Aswal VK (2013) Ionic liquid induced sphere-to-ribbon transition in the block copolymer mediated synthesis of silver nanoparticles. RSC Adv 3:8398–8406. doi:10.1039/c3ra41138a

    Article  Google Scholar 

  • Torimoto T, Tsuda T, Okazaki K, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22:1196–1221. doi:10.1002/adma.200902184

    Article  Google Scholar 

  • Ueno K, Tokuda H, Watanabe M (2010) Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys Chem Chem Phys 12:1649–1658. doi:10.1039/b921462n

    Article  Google Scholar 

  • Vollmer C, Janiak C (2011) Naked metal nanoparticles from metal carbonyls in ionic liquids: easy synthesis and stabilization. Coord Chem Rev 255:2039–2057. doi:10.1016/j.ccr.2011.03.005

    Article  Google Scholar 

  • Wang Y, Yang H (2006) Oleic acid as the capping agent in the synthesis of noble metal nanoparticles in imidazolium-based ionic liquids. Chem Commun 24:2545–2547. doi:10.1039/b604269d

    Article  Google Scholar 

  • Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248:2459–2477. doi:10.1016/j.ccr.2004.04.015

    Article  Google Scholar 

  • Ya KS, Lu WW, Li XY, Wang JJ, Yuan JL (2013) Tunable synthesis of Ag films at ionic liquid-aqueous interfaces. Chem Commun 49:1398–1400. doi:10.1039/c2cc38375f

    Article  Google Scholar 

  • Zhang C, Chen J, Zhou Y, Li D (2008) Ionic liquid-based “all-in-one” synthesis and photoluminescence properties of lanthanide fluorides. J Phys Chem C 112:10083–10088. doi:10.1021/jp802083q

    Article  Google Scholar 

  • Zhang W, Yao Y, Li KG, Huang Y, Chen YS (2011) Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environ Pollut 159:3757–3762. doi:10.1016/j.envpol.2011.07.013

    Article  Google Scholar 

Download references

Acknowledgments

Cíntia M. Corrêa thanks CAPES for master scholarship and F.F. Camilo also recognizes FAPESP for the financial support (2014/23065-3). The authors also acknowledge the transmission electron microscopy support of LNNano—Center for Nanoscience and Nanotechnology/MCT (research proposal TEM-MSC 15017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda F. Camilo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa, C.M., Bizeto, M.A. & Camilo, F.F. Direct synthesis of silver nanoparticles in ionic liquid. J Nanopart Res 18, 132 (2016). https://doi.org/10.1007/s11051-016-3436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3436-8

Keywords

Navigation