Skip to main content
Log in

Dependence of the composition, morphology and magnetic properties with the water and air exposure during the Fe1-yO/Fe3O4 core–shell nanoparticles synthesis

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The thermal decomposition of organometallic precursors in the presence of surfactants and a long-chain alcohol is a valuable method to synthesize magnetic nanoparticles (MNPs) because it provides good control of the final morphology and crystallinity of the magnetic material. These parameters, and consequently the magnetic properties, depend on several details of the experimental procedure of chemical synthesis. We have studied the role of the pre-decomposition step, heating the system to 373–393 K in inert gas flux, on the final composition and morphology of the system. By adding this intermediate step, we were able to produce MNPs with a Fe1-yO/Fe3O4 core–shell structure and sizes of 20–25 nm. When the same synthesis protocol was used skipping the pre-decomposition stage, monophasic MNPs of 11 nm with ferrite structure were obtained. These differences in the composition have a major effect on the resulting magnetic properties of MNPs, and are related to some by-reactions in the synthesis solution during the preparation procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data and materials used can be accessed by contacting the authors, excepting sample DH030 due to the natural oxidation process described in the article.

Code availability

All software used in this work are commercial.

References

  • Bronstein LM, Atkinson JE, Malyutin AG, Kidwai F, Stein BD, Morgan DG, Perry JM, Karty JA (2011) Nanoparticles by decomposition of long chain iron carboxylates: from spheres to stars and cubes. Langmuir 27:3044–3050

    Article  CAS  Google Scholar 

  • Chen R, Christiansen MG, Sourakov A, Mohr A, Matsumoto Y, Okada S, Jasanoff A, Anikeeva P (2016) High-performance ferrite nanoparticles through nonaqueous redox phase tuning. Nano Lett 16:1345–1351

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses, 2a edn. Wiley & VCH Verlag, Weinhein

    Book  Google Scholar 

  • El Medilli Y, Bardeau J-F, Randrianantoandro N, Grasset F, Greneche J-M (2012) Insights into the mechanism related to the phase transition from γ-Fe2O3 to α-Fe2O3 nanoparticles induced by thermal treatment and laser irradiation. J Phys Chem C 116:23785–23792

    Article  Google Scholar 

  • Escoda-Torroella M, Moya C, Fraile Rodríguez A, Batlle Z, Labarta A (2021) Selective control over the morphology and the oxidation state of iron oxide nanoparticles. Langmuir 37:35–45

    Article  CAS  Google Scholar 

  • Gao X, Liu H, Hidajat K, Kawi S (2015) Anti-coking Ni/SiO2 catalyst for dry reforming of methane: role of oleylamine/oleic acid organic pair. ChemCatChem 7:4188–4196

    Article  CAS  Google Scholar 

  • Hai HT, Yang HT, Kura H, Hasegawa D, Ogata Y, Takahashi M, Ogawa T (2010) Size control and characterization of wustite (core)/spinel (shell) nanocubes obtained by decomposition of iron oleate complex. J Colloid Interface Sci 346:37–42

    Article  CAS  Google Scholar 

  • Harris RA, Shumbula PM, van der Walt H (2015) Analysis of the interaction of surfactants oleic acid and oleylamine with iron oxide nanoparticles through molecular mechanics modeling. Langmuir 31:3934–3943

    Article  CAS  Google Scholar 

  • Hou Y, Xu Z, Sun S (2007) Controlled synthesis and chemical conversions of FeO nanoparticles. Angew Chem Int Ed 119:6329–6332

    Article  Google Scholar 

  • Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM (2015) Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7:11142–11154

    Article  CAS  Google Scholar 

  • Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801

    Article  CAS  Google Scholar 

  • Kemp SJ, Ferguson RM, Khandhar AP, Krishnan KM (2016) Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization. RSC Adv 6:77452–77464

    Article  CAS  Google Scholar 

  • Khurshid H, Li W, Chandra S, Phan M-H, Hadjipanayis GC, Mukherjee P, Srikanth H (2013) Mechanism and controlled growth of shape and size variant core/shell FeO/Fe3O4 nanoparticles. Nanoscale 5:7942–7952

    Article  CAS  Google Scholar 

  • Kwon SG, Piao Y, Park J, Angappane S, Jo Y, Hwang N-M, Park J-G, Hyeon T (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129:12571–12584

    Article  CAS  Google Scholar 

  • Lavorato GC, Lima E Jr, Troiani HE, Zysler RD, Winkler EL (2017) Tuning the coercivity and exchange bias by controlling the interface coupling in bimagnetic core/shell nanoparticles. Nanoscale 9:10240–10247

    Article  CAS  Google Scholar 

  • Lohr J, Almeida AA, Moreno MS, Troiani H, Goya GF, Torres TE, Fernandez-Pacheco R, Winkler EL, Vasquez Mansilla M, Cohen R, Nagamine LCCM, Rodríguez LM, Fregenal DE, Zysler RD, Lima E Jr (2019) Effects of Zn substitution in the magnetic and morphological properties of Fe-oxide-based core–shell nanoparticles produced in a single chemical synthesis. J Phys Chem C 123:1444–1453

    Article  CAS  Google Scholar 

  • Lucena IL, Saboya RMA, Oliveira JFG, Rodrigues ML, Torres AEB, Cavalcante CL Jr, Parente EJS Jr, Silva GF, Fernandes FAN (2011) Oleic acid esterification with ethanol under continuous water removal conditions. Fuel 90:902–904

    Article  CAS  Google Scholar 

  • McCammon CA (1992) Magnetic properties of FexO (x > 0.95): variation of Neel temperature. J Magn Magn Mater 104–107:1937–1938

    Article  Google Scholar 

  • Mourdikoudis S, Liz-Marzán LM (2013) Oleylamine in nanoparticle synthesis. Chem Mater 25:1465–1476

    Article  CAS  Google Scholar 

  • Omidghane M, Jenab E, Chae M, Bressler DC (2017) Production of renewable hydrocarbons by thermal cracking of oleic acid in the presence of water. Energy Fuels 31:9446–9454

    Article  CAS  Google Scholar 

  • Palchoudhury S, An W, Xu Y, Qin Y, Zhang Z, Chopra N, Holler RA, Turner CH, Bao Y (2011) Synthesis and Growth Mechanism of Iron Oxide Nanowhiskers. Nano Lett 11:1141–1146

    Article  CAS  Google Scholar 

  • Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  CAS  Google Scholar 

  • Parker FS (1971) Applications of infrared spectroscopy in biochemistry, biology, and medicine. Plenum Press, New York (Chapter 8)

    Book  Google Scholar 

  • Quiao L, Fu Z, Li J, Ghosen J, Zeng M, Stebbins J, Prasad PN, Swihart MT (2017) Standardizing size- and shape-controlled synthesis of monodisperse magnetite (Fe3O4) nanocrystals by identifying and exploiting effects of organic impurities. ACS Nano 11:6370–6381

    Article  Google Scholar 

  • Salazar-Alvarez G, Sort J, Suriñach S, Baró MD, Nogués J (2007) Synthesis and size-dependent exchange bias in inverted core−shell MnO/Mn3O4 nanoparticles. J Am Chem Soc 129:9102–9108

    Article  CAS  Google Scholar 

  • Smith BC (2018) The C=O bond, part VI: esters and the rule of three. Spectroscopy Online 33:20–23

    Google Scholar 

  • Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    Article  CAS  Google Scholar 

  • Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe Co, Mn) nanoparticles. J Am Chem Soc 126:273–279

    Article  CAS  Google Scholar 

  • Sun X, Huls NF, Sigdel A, Sun S (2012) Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles. Nano Lett 12:246–251

    Article  CAS  Google Scholar 

  • Unni M, Uhl AM, Savliwala S, Savitzky BH, Dhavalikar R, Garraud N, Arnold DP, Kourkoutis LF, Andrew JS, Rinaldi C (2017) Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano 11:2284–2303

    Article  CAS  Google Scholar 

  • Vargas JM, Zysler RD (2005) Tailoring the size in colloidal iron oxide magnetic nanoparticles. Nanotechnol 16:1474–1476

    Article  CAS  Google Scholar 

  • Lavorato GC, Lima Jr. E, Tobia D, Fiorani D, Troiani HE, Zysler RD, Winkler EL (2014) Size effects in bimagnetic CoO/CoFe2O4 core/shell nanoparticles. Nanotechnol. 25:355704

  • Kavich DW, Dickerson JH, Mahajan SV, Hasan SA, Park J-H (2008) Exchange bias of singly inverted FeO/Fe3O4 core-shell nanocrystals. Phys Rev B 78:174414.

  • Cotin G, Kiefer C, Perton F, Ihiawakrim D, Blanco Andujar C, Moldovan S, Lefevre C, Ersen O, Pichon B, Mertz D, Begin-Colin S (2018) Unravelling the thermal decomposition parameters for the synthesis of anisotropic iron oxide nanoparticles. Nanomaterials 8:881

  • Krispin M, Ullrich A, Horn S (2012) Crystal structure of iron-oxide nanoparticles synthesized from ferritin. J. Nanopart. Res. 14:669

  • Scopel E, Conti PP, Stroppa DG, Dalmaschio CJ (2019) Synthesis of functionalized magnetite nanoparticles using only oleic acid and iron (III) acetylacetonate. SN Appl Sci 1:147

  • Song L, Yan C, Zhang W, Wu H, Jia Z, Ma M, Xie J, Gu N, Zhang Y (2016) Influence of reaction solvent on crystallinity and magnetic properties of MnFe2O4 nanoparticles synthesized by thermal decomposition. J Nanomater 2016:4878935

  • Wallace WE (direc.) (2020) Infrared spectra in NIST chemistry WebBook. In: Linstrom PJ, Mallard WG. NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899

Download references

Funding

The authors acknowledge the financial support of the Argentinian Agencia Nacional de Promoción de Ciencia y Tecnológica (ANPCyT) through the project nos. PICT-2016–0288 and PICT-2018–02565. The authors also thank the Universidad Nacional de Cuyo (UNCuyo) by the financial support through the project nos. 06/C527 and 06/C528. The authors also acknowledge the support of the EU commission under the grant H2020-MSCA-RISE-2016, SPICOLOST project no. 734187. GFG thanks the Spanish Ministerio de Ciencia, Innovación y Universidades by the partial financial support through project PID2019-106947RB-C21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lima Jr.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 651 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohr, J., Vasquez Mansilla, M., Gerbaldo, M.V. et al. Dependence of the composition, morphology and magnetic properties with the water and air exposure during the Fe1-yO/Fe3O4 core–shell nanoparticles synthesis. J Nanopart Res 23, 140 (2021). https://doi.org/10.1007/s11051-021-05275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05275-5

Keywords

Navigation