Skip to main content
Log in

Effect of Ag\(_{2}\)S/SiO\(_{2}\) QDs surface structure on luminescence photostability

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The paper presents regularities that demonstrate the formation effect of passivating ligands of thioglycolic acid, L-cysteine (TGA, L-Cys), and dielectric shells (SiO\(_{2}\)) on the Ag\(_{2}\)S nanocrystals’ surface on the their IR luminescence photostability. Manifestations of the interaction between passivating ligand molecules of TGA and L-Cys with Ag\(_{2}\)S nanocrystals, as well as SiO\(_{2}\) shell formation due to the replacement process of organic ligands with a silica ligand (MPTMS) (“ligand exchange”), were established, using FTIR absorption spectroscopy. In the case of replacing TGA with MPTMS, an increase in the luminescence quantum yield of formed Ag\(_{2}\)S quantum dots (QDs) and its resistance to long-term exposure to exciting light was found. In the case of replacing L-Cys with MPTMS, the formation of a fragmentary SiO\(_{2}\)/L-Cys shell on Ag\(_{2}\)S nanocrystals due to the partial replacement of L-Cys with MPTMS was found. It contributes to the non-reversible photodegradation of Ag\(_{2}\)S QDs luminescence as a result of SiO\(_{2}\)/L-Cys shell photodestruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cotta MA (2020) Quantum dots and their applications: What lies ahead. ACS Applied Nano Materials 3(6):4920–4924. https://doi.org/10.1021/acsanm.0c01386

    Article  CAS  Google Scholar 

  2. Hafiz, SB, Scimeca, M, Sahu, A, Ko, D-K (2019) Colloidal quantum dots for thermal infrared sensing and imaging. Nano Convergence, vol 6(1). https://doi.org/10.1186/s40580-019-0178-1

  3. Boschi, F, Sanctis, FD (2017)Overview of the optical properties of fluorescent nanoparticles for optical imaging. European Journal of Histochemistry, vol 61(3). https://doi.org/10.4081/ejh.2017.2830

  4. Miller DR, Jarrett JW, Hassan AM, Dunn AK (2017) Deep tissue imaging with multiphoton fluorescence microscopy. Current Opinion in Biomedical Engineering 4:32–39. https://doi.org/10.1016/j.cobme.2017.09.004

    Article  Google Scholar 

  5. Caponetti V, Trzcinski JW, Cantelli A, Tavano R, Papini E, Mancin F, Montalti M (2019) Self-assembled biocompatible fluorescent nanoparticles for bioimaging. Frontiers in Chemistry 7. https://doi.org/10.3389/fchem.2019.00168

  6. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews 44(14):4743–4768. https://doi.org/10.1039/c4cs00392f

    Article  CAS  Google Scholar 

  7. Litvin AP, Martynenko IV, Purcell-Milton F, Baranov AV, Fedorov AV, Gunko YK (2017) Colloidal quantum dots for optoelectronics. Journal of Materials Chemistry A 5(26):13252–13275. https://doi.org/10.1039/c7ta02076g

    Article  CAS  Google Scholar 

  8. Wang, Z, Zhang, N, Brenneman, K, Wu, TC, Jung, H, Biswas, S, Sen, B, Reinhardt, K, Liao, S, Stroscio, MA, Dutta, M (2012) Optoelectronic applications of colloidal quantum dots. In: Quantum Dot Devices, pp 351–367. Springer. https://doi.org/10.1007/978-1-4614-3570-9_15

  9. Chen M, Lu L, Yu H, Li C, Zhao N (2021) Integration of colloidal quantum dots with photonic structures for optoelectronic and optical devices. Advanced Science 8(18):2101560. https://doi.org/10.1002/advs.202101560

    Article  CAS  Google Scholar 

  10. Colace, L, Iacovo, AD, Venettacci, C (2018) Colloidal quantum dots for optoelectronic applications: fundamentals and recent progress. In: 20th Italian National Conference on Photonic Technologies (Fotonica 2018). Institution of Engineering and Technology. https://doi.org/10.1049/cp.2018.1626

  11. Miao Y, Yang P, Zhao J, Du Y, He H, Liu Y (2015) Photodegradation of mercaptopropionic acid- and thioglycollic acid-capped CdTe quantum dots in buffer solutions. Journal of Nanoscience and Nanotechnology 15(6):4462–4469. https://doi.org/10.1166/jnn.2015.9800

    Article  CAS  Google Scholar 

  12. Tsipotan AS, Gerasimova MA, Polyutov SP, Aleksandrovsky AS, Slabko VV (2017) Comparative analysis of methods for enhancement of the photostability of CdTe@TGA QD colloid solutions. The Journal of Physical Chemistry B 121(23):5876–5881. https://doi.org/10.1021/acs.jpcb.7b03166

    Article  CAS  Google Scholar 

  13. Kumari A, Singh RR (2017) Encapsulation of highly confined CdSe quantum dots for defect free luminescence and improved stability. Physica E: Low-dimensional Systems and Nanostructures 89:77–85. https://doi.org/10.1016/j.physe.2017.01.031

    Article  CAS  Google Scholar 

  14. Ma Q-F, Chen J-Y, Wu X, Wang P-N, Yue Y, Dai N (2011) Photostability comparison of CdTe and CdSe/CdS/ZnS quantum dots in living cells under single and two-photon excitations. Journal of Luminescence 131(11):2267–2272. https://doi.org/10.1016/j.jlumin.2011.05.055

  15. Ma J, Chen J-Y, Zhang Y, Wang P-N, Guo J, Yang W-L, Wang C-C (2007) Photochemical instability of thiol-capped CdTe quantum dots in aqueous solution and living cells: Process and mechanism. The Journal of Physical Chemistry B 111(41):12012–12016. https://doi.org/10.1021/jp073351+

    Article  CAS  Google Scholar 

  16. Wang, T, Jiang, X (2013) Size-dependent stability of water-solubilized CdTe quantum dots and their uptake mechanism by live HeLa cells. ACS Applied Materials &Interfaces, 5(4):1190–1196. https://doi.org/10.1021/am302234z

  17. Bhati M, Ivanov SA, Senftle TP, Tretiak S, Ghosh D (2022) Nature of electronic excitations in small non-stoichiometric quantum dots. Journal of Materials Chemistry A 10(10):5212–5220. https://doi.org/10.1039/d1ta07983b

    Article  CAS  Google Scholar 

  18. Wei HH-Y, Evans CM, Swartz BD, Neukirch AJ, Young J, Prezhdo OV, Krauss TD (2012) Colloidal semiconductor quantum dots with tunable surface composition. Nano Letters 12(9):4465–4471. https://doi.org/10.1021/nl3012962

    Article  CAS  Google Scholar 

  19. Kurzmann A, Ludwig A, Wieck AD, Lorke A, Geller M (2016) Auger recombination in self-assembled quantum dots: Quenching and broadening of the charged exciton transition. Nano Letters 16(5):3367–3372. https://doi.org/10.1021/acs.nanolett.6b01082

    Article  CAS  Google Scholar 

  20. Zeng Y, Kelley DF (2015) Two-photon photochemistry of CdSe quantum dots. ACS Nano 9(10):10471–10481. https://doi.org/10.1021/acsnano.5b04710

    Article  CAS  Google Scholar 

  21. Smirnov MS, Ovchinnikov OV, Grevtseva IG, Zvyagin AI, Perepelitsa AS, Ganeev RA (2018) Photoinduced degradation of the optical properties of colloidal ag2s and CdS quantum dots passivated by thioglycolic acid. Optics and Spectroscopy 124(5):681–686. https://doi.org/10.1134/s0030400x18050211

    Article  CAS  Google Scholar 

  22. Ovchinnikov, OV, Grevtseva, IG, Smirnov, MS, Kondratenko, TS, Perepelitsa, AS, Aslanov, SV, Khokhlov, VU, Tatyanina, EP, Matsukovich, AS (2020) Effect of thioglycolic acid molecules on luminescence properties of ag\(_{2}\)s quantum dots. Optical and Quantum Electronics, vol 52(4). https://doi.org/10.1007/s11082-020-02314-8

  23. Ovchinnikov OV, Grevtseva IG, Smirnov MS, Kondratenko TS (2019) Reverse photodegradation of infrared luminescence of colloidal ag2s quantum dots. Journal of Luminescence 207:626–632. https://doi.org/10.1016/j.jlumin.2018.12.019

    Article  CAS  Google Scholar 

  24. Kondratenko T, Ovchinnikov O, Grevtseva I, Smirnov M, Erina O, Khokhlov V, Darinsky B, Tatianina E (2020) Thioglycolic acid FTIR spectra on ag2s quantum dots interfaces. Materials 13(4):909. https://doi.org/10.3390/ma13040909

    Article  CAS  Google Scholar 

  25. Grevtseva IG, Aslanov SV (2020) Spectral luminescent properties of colloidal ag2s quantum dots passivated with l-cysteine molecules. Bulletin of the Russian Academy of Sciences: Physics 84(5):517–519. https://doi.org/10.3103/s1062873820050111

    Article  CAS  Google Scholar 

  26. Ovchinnikov OV, Kondratenko TS, Grevtseva IG, Smirnov MS, Pokutnyi SI (2016) Sensitization of photoprocesses in colloidal ag\(_{2}\)s quantum dots by dye molecules. Journal of Nanophotonics 10(3):033505. https://doi.org/10.1117/1.jnp.10.033505

    Article  Google Scholar 

  27. Ovchinnikov, OV, Smirnov, MS, Kondratenko, TS, Ambrosevich, SA, Metlin, MT, Grevtseva, IG, Perepelitsa, AS (2017) Förster resonance energy transfer in hybrid associates of colloidal ag2s quantum dots with thionine molecules. Journal of Nanoparticle Research, vol 19(12). https://doi.org/10.1007/s11051-017-4093-2

  28. Ovchinnikov OV, Perepelitsa AS, Smirnov MS, Latyshev AN, Grevtseva IG, Vasiliev RB, Goltsman GN, Vitukhnovsky AG (2020) Luminescence of colloidal agag\(_{2}\)s/ZnS core/shell quantum dots capped with thioglycolic acid. Journal of Luminescence 220:117008. https://doi.org/10.1016/j.jlumin.2019.117008

    Article  CAS  Google Scholar 

  29. Krivenkov, VA, Samokhvalov, PS, Linkov, PA, Solovyeva, DO, Kotkovskii, GE, Chistyakov, AA, Nabiev, I (2014) Surface ligands affect photoinduced modulation of the quantum dots optical performance. In: Andrews, DL, Nunzi, J-M, Ostendorf, A (eds.) Nanophotonics V SPIE. https://doi.org/10.1117/12.2057828

  30. Nida DL, Nitin N, Yu WW, Colvin VL, Richards-Kortum R (2007) Photostability of quantum dots with amphiphilic polymer-based passivation strategies. Nanotechnology 19(3):035701. https://doi.org/10.1088/0957-4484/19/03/035701

    Article  CAS  Google Scholar 

  31. Sun Y, Song F, Qian C, Peng K, Sun S, Zhao Y, Bai Z, Tang J, Wu S, Ali H, Bo F, Zhong H, Jin K, Xu X (2017) High-q microcavity enhanced optical properties of CuInS\(_{2}\)/ZnS colloidal quantum dots toward non-photodegradation. ACS Photonics 4(2):369–377. https://doi.org/10.1021/acsphotonics.6b00843

    Article  CAS  Google Scholar 

  32. Klyachkovskaya EV, Vashchenko SV, Stupak AP, Gaponenko SV (2010) Photodegradation of CdSe/ZnSsemiconductor nanocrystals in a polymer film in air and under vacuum. Journal of Applied Spectroscopy 77(5):732–736. https://doi.org/10.1007/s10812-010-9395-4

    Article  CAS  Google Scholar 

  33. Vokhmintcev KV, Guhrenz C, Gaponik N, Nabiev I, Samokhvalov PS (2017) Quenching of quantum dots luminescence under light irradiation and its influence on the biological application. Journal of Physics: Conference Series 784:012014. https://doi.org/10.1088/1742-6596/784/1/012014

    Article  CAS  Google Scholar 

  34. Vasudevan D, Gaddam RR, Trinchi A, Cole I (2015) Core/shell quantum dots: Properties and applications. Journal of Alloys and Compounds 636:395–404. https://doi.org/10.1016/j.jallcom.2015.02.102

    Article  CAS  Google Scholar 

  35. Kim, J, Hwang, DW, Jung, HS, Kim, KW, Pham, X-H, Lee, S-H, Byun, JW, Kim, W, Kim, H-M, Hahm, E, Ham, K-m, Rho, W-Y, Lee, DS, Jun, B-H (2022) High-quantum yield alloy-typed core/shell CdSeZnS/ZnS quantum dots for bio-applications. Journal of Nanobiotechnology, vol 20(1). https://doi.org/10.1186/s12951-021-01227-2

  36. Smirnov, M.S, Buganov, OV, Tikhomirov, SA, Ovchinnikov, OV, Shabunya-Klyachkovskaya, EV, Grevtseva, IG, Kondratenko, TS (2017) Decay of electronic excitations in colloidal thioglycolic acid (TGA)-capped CdS/ZnS quantum dots. Journal of Nanoparticle Research, vol 19(11). https://doi.org/10.1007/s11051-017-4067-4

  37. Wegner KD, Dussert F, Truffier-Boutry D, Benayad A, Beal D, Mattera L, Ling WL, Carrière M, Reiss P (2019) Influence of the core/shell structure of indium phosphide based quantum dots on their photostability and cytotoxicity. Frontiers in Chemistry 7. https://doi.org/10.3389/fchem.2019.00466

  38. Perepelitsa AS, Ovchinnikov OV, Smirnov MS, Kondratenko TS, Grevtseva IG, Aslanov SV, Khokhlov VY (2021) Structural and optical properties of ag2s/SiO2 core/shell quantum dots. Journal of Luminescence 231:117805. https://doi.org/10.1016/j.jlumin.2020.117805

    Article  CAS  Google Scholar 

  39. Smirnov MS, Ovchinnikov OV (2020) IR luminescence mechanism in colloidal ag\(_{2}\)s quantum dots. Journal of Luminescence 227:117526. https://doi.org/10.1016/j.jlumin.2020.117526

    Article  CAS  Google Scholar 

  40. Jiang P, Wang R, Chen Z (2015) Thiol-based non-injection synthesis of near-infrared ag\(_{2}\)s/ZnS core/shell quantum dots. RSC Advances 5(70):56789–56793. https://doi.org/10.1039/c5ra08008h

    Article  CAS  Google Scholar 

  41. Ovchinnikov O, Aslanov S, Smirnov M, Perepelitsa A, Kondratenko T, Selyukov A, Grevtseva I (2020) Colloidal ag\(_{2}\)s/sio\(_{2}\) core/shell quantum dots with IR luminescence. Optical Materials Express 11(1):89. https://doi.org/10.1364/ome.411432

    Article  CAS  Google Scholar 

  42. Zeng Y-M, Pan L-J, Wang J, Fan Y-L, Shu Y, Pang D-W, Zhang Z-L (2020) Interfacial synthesis of ag\(_{2}\)s/ZnS core/shell quantum dots in a droplet microreactor. ChemistrySelect 5(20):5889–5894. https://doi.org/10.1002/slct.202001126

    Article  CAS  Google Scholar 

  43. Piwoński I, Grobelny J, Cichomski M, Celichowski G, Rogowski J (2005) Investigation of 3-mercaptopropyltrimethoxysilane self-assembled monolayers on au(111) surface. Applied Surface Science 242(1–2):147–153. https://doi.org/10.1016/j.apsusc.2004.08.009

    Article  CAS  Google Scholar 

  44. Lin S, Feng Y, Wen X, Zhang P, Woo S, Shrestha S, Conibeer G, Huang S (2014) Theoretical and experimental investigation of the electronic structure and quantum confinement of wet-chemistry synthesized ag\(_{2}\)s nanocrystals. The Journal of Physical Chemistry C 119(1):867–872. https://doi.org/10.1021/jp511054g

    Article  CAS  Google Scholar 

  45. Gao M, Zhao H, Wang Z, Zhao Y, Zou X, Sun L (2021) Controllable preparation of ag2s quantum dots with size-dependent fluorescence and cancer photothermal therapy. Advanced Powder Technology 32(6):1972–1982. https://doi.org/10.1016/j.apt.2021.04.011

    Article  CAS  Google Scholar 

  46. Fujimura, N, Ohta, A, Makihara, K, Miyazaki, S (2016) Evaluation of valence band top and electron affinity of SiO\(_{2}\) and si-based semiconductors using x-ray photoelectron spectroscopy. Japanese Journal of Applied Physics, 55(8S2):08–06. https://doi.org/10.7567/jjap.55.08pc06

  47. Ievlev VM, Latyshev AN, Ovchinnikov OV, Smirnov MS, Klyuev VG, Kholkina AM, Utekhin AN, Evlev AB (2006) Photostimulated formation of anti-stokes luminescence centers in ionic covalent crystals. Doklady Physics 51(8):400–402. https://doi.org/10.1134/s1028335806080027

    Article  CAS  Google Scholar 

  48. Ovchinnikov, OV, Smirnov, MS, Latyshev, AN, Stasel’ko, DI (2007) Photostimulated formation of sensitized anti-stokes luminescence centers in AgCl(i) microcrystals Optics and Spectroscopy, 103(3):482–489. https://doi.org/10.1134/s0030400x07090172

  49. Latyshev AN, Ovchinnikov OV, Klyuev VG, Smirnov MS, Stasel’ko DI (2013) Photostimulated luminescence flash: from scientific photography to photonics of nanostructured materials. Optics and Spectroscopy 114(4):544–553. https://doi.org/10.1134/s0030400x13040115

    Article  CAS  Google Scholar 

  50. Smirnov MS, Ovchinnikov OV, Hazal NAR, Zvyagin AI (2018) Control over the size effect in the spectroscopic properties of znxcd1-xs colloidal quantum dots. Inorganic Materials 54(5):413–420. https://doi.org/10.1134/s002016851805014x

    Article  CAS  Google Scholar 

  51. Banizi ZT, Seifi M (2017) Optical properties of hydrothermally synthesized TGA-capped CdS nanoparticles: controlling crystalline size and phase. Materials Research Express 4(10):105007. https://doi.org/10.1088/2053-1591/aa8a8a

    Article  CAS  Google Scholar 

  52. Silva, FO, Carvalho, MS, Mendonça, R, Macedo, WA, Balzuweit, K, Reiss, P, Schiavon, MA (2012) Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. Nanoscale Research Letters, vol 7(1). https://doi.org/10.1186/1556-276x-7-536

  53. Chung Chin-Kap, LM-H (2004) Self-assembled monolayers of mercaptoacetic acid on ag powder: characterization by ft-ir diffuse reflection spectroscopy. Bulletin of the Korean Chemical Society

  54. Nakamoto, K (2008) Infrared and raman spectra of inorganic and coordination compounds, Part A and Part B. WILEY. https://www.ebook.de/de/product/6433326

  55. Attar AR, Blumling DE, Knappenberger KL (2011) Photodissociation of thioglycolic acid studied by femtosecond time-resolved transient absorption spectroscopy. The Journal of Chemical Physics 134(2):024514. https://doi.org/10.1063/1.3526746

    Article  CAS  Google Scholar 

  56. Chen M-A, Lu X-B, Guo Z-H, Huang R (2011) Influence of hydrolysis time on the structure and corrosion protective performance of (3-mercaptopropyl)triethoxysilane film on copper. Corrosion Science 53(9):2793–2802. https://doi.org/10.1016/j.corsci.2011.05.010

  57. Nuryono, N, Rosiati, NM, Rusdiarso, B, Sakti, SCW, Tanaka, S (2014) Coating of magnetite with mercapto modified rice hull ash silica in a one-pot process. SpringerPlus, vol 3(1). https://doi.org/10.1186/2193-1801-3-515

Download references

Acknowledgements

The results of transmission electron microscopy were obtained on a Libra 120 microscope using the equipment of the Center for Collective Use of the Voronezh State University. The work was carried out within the framework of the State Task for Universities (FZGU-2023-0007). The work was supported by the Ministry of Science and Higher Education of the Russian Federation under agreement No. 075-15-2021-1351 in terms of the structural analysis of colloidal Ag\(_{2}\)S QDs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irina Grevtseva or Tamara Kondratenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grevtseva, I., Ovchinnikov, O., Smirnov, M. et al. Effect of Ag\(_{2}\)S/SiO\(_{2}\) QDs surface structure on luminescence photostability. J Nanopart Res 25, 118 (2023). https://doi.org/10.1007/s11051-023-05705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05705-6

Keywords

Navigation