Skip to main content
Log in

Behavioral and Molecular Consequences of Deficiency of Endogenous Kynurenines in Honeybees (Apis mellifera L.)

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Behavioral and histochemical studies demonstrated that endogenous tryptophan metabolites – kynurenines – play a role in the long-term retention of memory traces and the functioning of key components in the (GluR–LIMK1– F-actin) signaling cascade, which mediates these functions. Kynurenine deficiency induced by injections of allopurinol (a tryptophan oxygenase inhibitor) inhibited long-term memory, decreased the level of expression of LIMK1, and produced a paradoxical increase in the F-actin level in the cerebral ganglion in bees. These results are consistent with our previous data obtained in Drosophila with a mutation in the structural gene for tryptophan oxygenase, i.e., the vermilion mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. P. Lapin, “The kynurenine pathway of tryptophan metabolism and its role in nervous system function and in the actions of psychotropic drugs,” Zh. Khim. Vses. Obshch. D. I. Mendeleeva, 21, No. 2, 151–157 (1976).

    CAS  Google Scholar 

  2. N. G. Lopatina, T. G. Zachepilo, E. G. Chesnokova, and E. V. Savvateeva- Popova, “Mutations in the structural genes for enzymes involved in the kynurenine pathway of tryptophan metabolism in the modulation of components of the signal cascade – glutamate receptors and cytoskeletal actin,” Genetika, 43, No. 10, 1396–1401 (2007).

    PubMed  CAS  Google Scholar 

  3. N. G. Lopatina, T. G. Zachepilo, and E. V. Savvateeva-Popova, “LIM kinase 1 in the cerebral ganglion in Drosophila in condition of genetic lesions to the balance of kynurenines,” Dokl. Ros. Akad. Nauk., 418, No. 1, 125–128 (2008).

    Google Scholar 

  4. N. G. Lopatina, E. G. Chesnokova,V. B. Smirnov, I. V. Ryzhova, and V. V. Ponomarenko, “The kynurenine pathway of tryptophan metabolism and its importance in the neurophysiology of insects,” Entomol. Obozr., 83, No. 1, 3–22 (2004).

    Google Scholar 

  5. I. V. Ryzhova, N. G. Lopatina, and E. G. Chesnokova, “Excitatory amino acid receptors in associative learning in the honeybee Apis mellifera L.,” Tr. Russk. Entomol. Obshch., 74, 17–32 (2003).

    Google Scholar 

  6. M. Alkondon, E. Pereira, and P. Yu, “Targeted deletion of the kynurenine aminotransferase II gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via α7 nicotinic receptors in the hippocampus,” J. Neurosci., 24, No. 19, 4635–4648 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. N. Cairns, V. Lee, and J. Trojanowski, “The cytoskeleton in neurodegenerative diseases,” J. Pathol., 204, 438–449 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. L. Chen, C. Rex, and M. Casale, “Changes in synaptic morphology accompany actin signaling during LTP,” J. Neurosci., 27, No. 20, 5563–5372 (2007).

    Article  Google Scholar 

  9. L. Cingolani and Y. Goda, “Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy,” Neurosci., 9, 344–356 (2008).

    CAS  Google Scholar 

  10. C. Dillon and Y. Goda, “The actin cytoskeleton: integrating form and function at the synapse,” Ann. Rev. Neurosci., 28, 25–56 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. I. Frambach,W. Rossler, M. Winkler, and F. Schurmann, “F-actin at identified synapses in the mushroom body neuropil of the insect brain,” J. Comp. Neurol., 475, No. 3, 303–314 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. Y. Meng,Y. Zhang, and V. Tregoubov, “Abnormal spine morphology and enhanced LTP in LIMK/knockout mice,” Neuron, 35, 121–133 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. H. Nemeth, J. Toidi, and L. Veesei, “Role of kynurenines in the central and peripheral nervous systems,” Curr. Neurovasc. Res., 2, No. 3, 249–260 (2005).

    Article  PubMed  Google Scholar 

  14. R. H. Osborne, “Insect neurotransmission: neurotransmitters and their receptors,” Pharmacol. Ther., 69, 117–142 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. M. Sapko, P. Guidetti, and P. Yu, “Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: implications for Huntington’s disease,” Exptl. Neurol., 197, No. 1, 31–40 (2006).

    Article  CAS  Google Scholar 

  16. R. Schwarcz, P. Rassoulpour, and H.-Q. Wu, “Increased cortical kynurenate content in schizophrenia,” Biol. Psych., 50, 521–530 (2001).

    Article  CAS  Google Scholar 

  17. T. Tada and M. Sheng, “Molecular mechanisms of dendritic spine morphogenesis,” Curr. Opin. Neurobiol., 16, No. 1, 95–101 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. P. Yu, N. Di Prospero, and M. Sapko, “Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice,” Mol. Cell. Biol., 24, No. 16, 6919–6930 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. P. Yu, N. Mosbrook, and D. Tagle, “Genomic organization and expression analysis of mouse kynurenine aminotransferase II, a possible factor in the pathophysiology of Huntington’s disease,” Mamm. Genome, 10, 845–852 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Lopatina.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 60, No. 2, pp. 229–235, March–April, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopatina, N.G., Zachepilo, T.G., Chesnokova, E.G. et al. Behavioral and Molecular Consequences of Deficiency of Endogenous Kynurenines in Honeybees (Apis mellifera L.). Neurosci Behav Physi 41, 626–631 (2011). https://doi.org/10.1007/s11055-011-9465-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-011-9465-y

KEY WORDS

Navigation