Skip to main content
Log in

Mechanisms of the Interdependent Influences of the Prefrontal Cortex, Hippocampus, and Amygdala on the Functioning of the Basal Ganglia and the Selection of Behavior

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

A hypothetical mechanism is proposed for the functioning of neural networks including limbic structures, the neocortex, and the basal ganglia. This hypothesis is based on existing data showing that the hippocampus, amygdala, and prefrontal cortex interact with each other, that the inputs of these structures converge on spiny neurons in the nucleus accumbens, and that these inputs are organized topically and can be modified. As GABAergic spiny cells in the nucleus accumbens innervate neurons in the output nucleus of the basal ganglia, which have inhibitory influences on the conduction of excitation via the thalamic nuclei to the limbic structures and neocortex, the extent of activation of neurons in these areas and, hence, the selection of behavior, is to a significant extent dependent on the types of responses mounted by spiny cells. When simultaneous fi ring of neurons in the limbic structures and cortex occurs, summation of excitation on spiny cells and increases in their responses lead ultimately to increased cortical activity and strengthening of cortical influences on the selection of behavior. When neurons in the two structures fi re with a time shift, excitation of neurons in the structure strongly activated first can undergo a further increase due to disinhibition of the thalamic nuclei via the basal ganglia, while the activity of neurons in the other structure can be suppressed, if the responses of spiny cells to the excitation arriving from this structure is decreased. This decrease can be the result of heterosynaptic depression, which is based on potentiation of the efficiency of the excitatory inputs from a number of structures converging on inhibitory interneurons in the nucleus accumbens and basolateral amygdala. As a result, the selection of behavior is determined by which structure was involved in activity first. Lesioning of different inputs in the nucleus accumbens from the limbic structures must lead to different behavioral impairments due to the topical organization of these inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al’bertin, S. V., “The involvement of the nucleus accumbens (N. accumbens) in forming responses to spatial selection in rats in a radial maze,” Ros. Fiziol. Zh., 88, No. 5, 545–552 (2002).

    Google Scholar 

  • Bauer, E. P. and LeDoux, J. E., “Heterosynaptic long-term potentiation of inhibitory interneurons in the lateral amygdala,” J. Neurosci., 24, No. 43, 9507–9512 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Belujon, P. and Grace, A. A., “Critical role of the prefrontal cortex in regulation of hippocampus-accumbens information fl ow,” J. Neurosci., 28, No. 39, 9797–9805 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennett, B. D. and Bolam, J. P., “Synaptic input and output of parvalbumin-reactive neurons in the neostriatum of the rat,” Neuroscience, 62, No. 3, 707–719 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Britt, J. P., Benaliouad, F., McDevitt, R. A., et al., “Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens,” Neuron, 76, No. 4, 790–803 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brog, J. S., Salyapongse, A., Deutch, A. Y., and Zahm, D. S., “The patterns of afferent innervation of the core and shell in the ‘accumbens’ part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold,” J. Comp. Neurol., 338, 255–278 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Buot, A. and Yelnik, J., “Functional anatomy of the basal ganglia: limbic aspects,” Rev. Neurol. (Paris), 168, No. 8–9, 569–575 (2012).

    Article  CAS  Google Scholar 

  • Degenetais, E., Thierry, A. M., Glowinski, J., and Gioanni, Y., “Synaptic infl uence of hippocampus on pyramidal cells of the rat prefrontal cortex: an in vivo intracellular recording study,” Cereb. Cortex, 13, No. 17, 782–792 (2003).

    Article  PubMed  Google Scholar 

  • Doyère, V., Schefe, G. E., Sigurdson, T., and LeDoux, J. E., “Long-term potentiation in freely moving rat reveals asymmetries in thalamic and cortical inputs to the lateral amygdala,” Eur. J. Neurosci., 17, No. 12, 2703–2715 (2003).

    Article  PubMed  Google Scholar 

  • Finch, D. M., “Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, mid-line thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens,” Hippocampus, 6 No. 5, 495–512 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Floresco, S. B., Blaha, C. D., Yang, C. R., and Phillips, A. G., “Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection,” J. Neurosci., 21, No. 8, 2851–2860 (2001).

    CAS  PubMed  Google Scholar 

  • French, S. J., Hailstone, J. C., and Totterdell, S., “Basolateral amygdala efferents to the ventral subiculum preferentially innervate pyramidal cell dendritic spines,” Brain Res., 981, No. 1–2, 160–167, (2003).

    Article  CAS  PubMed  Google Scholar 

  • French, S. J. and Totterdell, S., “Quantifi cation of morphological differences in boutons from different afferent populations to the nucleus accumbens,” Brain Res., 1007, No. 1–2, 167–177, (2004).

    Article  CAS  PubMed  Google Scholar 

  • French, S. J. and Totterdell, S., “Individual nucleus accumbens projection neurons receive both basolateral amygdala and ventral subicular afferents in rats,” Neuroscience, 119, No. 1, 19–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  • French, S. J. and Totterdell, S., “Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens,” J. Comp. Neurol., 446, No. 2, 151–165 (2002).

    Article  PubMed  Google Scholar 

  • Friedman, D. P., Aggleton, J. P., and Saunders, R. C., “Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain,” J. Comp. Neurol., 450, No. 4, 345–365 (2002).

    Article  PubMed  Google Scholar 

  • Furtak, S. C., Wei, S. M., Agster, K. L., and Burwell, R. D., “Functional neuroanatomy of the parahippocampal region in the rat: the perirhinal and postrhinal cortices,” Hippocampus, 17, No. 9, 709–722 (2007).

    Article  PubMed  Google Scholar 

  • Gill, K. M. and Grace, A. A., “Heterogeneous processing of amygdala and hippocampal inputs in the rostral and caudal subregions of the nucleus accumbens,” Int. J. Neuropsychopharmacol., 14, No. 10, 1301–1314 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  • Goto, Y. and O’Donnell, P., “Timing-dependent limbic-motor synaptic integration in the nucleus accumbens,” Proc. Natl. Acad. Sci. USA., 99, No. 20, 13,189–13,193 (2002).

    Article  CAS  Google Scholar 

  • Groenewegen, H. J., Galls-de Graaf, Y., and Smeets, W. J., “Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats,” J. Chem. Neuroanat., 16, No. 3, 167–185 (1999a).

    Article  CAS  PubMed  Google Scholar 

  • Groenewegen, H. J., Wright, C. L, Beyer, A. V., and Voorn, P., “Convergence and segregation of ventral striatal inputs and outputs,” Ann., N. Y. Acad. Sci., 877, 49–63 (1999b).

    Article  CAS  Google Scholar 

  • Gruber, A. J., Hussain, R. J., and O’Donnell, P., “The nucleus accumbens: a switchboard for goal-directed behaviors,” PLoS One., 4, No. 4, e5062 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  • Haber, S. N., “The primate basal ganglia: parallel and integrative networks,” J. Chem. Neuroanat., 26, No. 4, 317–330 (2003).

    Article  PubMed  Google Scholar 

  • Howland, J. G., Taepavarapruk, P., and Phillips, A. G., “Glutamate receptor-dependent modulation of dopamine effl ux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats,” J. Neurosci., 22, No. 3, 1137–1145 (2002).

    CAS  PubMed  Google Scholar 

  • Ishikawa, A. and Nakamura, S., “Convergence and interaction of hippocampal and amygdalar projections within the prefrontal cortex in the rat,” J. Neurosci., 23, No. 31, 9987–9995 (2003).

    CAS  PubMed  Google Scholar 

  • Joel, D. and Weiner, I., “The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum,” Neuroscience, 96, No. 3, 451–474 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Johnson, A., van der Meer, M. A., and Redish, A. D., “Integrating hippocampus and striatum in decision-making,” Curr. Opin. Neurobiol., 17, No. 6, 692–697 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jongen-Relo, A. L., Groenewegen, H. J., and Voorn, P., “Evidence for a multi-compartmental histochemical organization of the nucleus accumbens in the rat,” J. Comp. Neurol., 337, No. 2, 267–276 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Kargari, A., Ramshini, E., Alaei, H., et al., “Different current intensities electrical stimulation of prelimbic cortex of mPFC produces different effects on morphine-induced conditioned place preference in rats,” Behav. Brain Res., 231, No. 1, 187–192 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. and Spruston, N., “Target-specifi c output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum,” Hippocampus., 22, No. 4, 693–706, (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  • Lape, R. and Dani, J. A., “Complex response to afferent excitatory bursts by nucleus accumbens medium spiny projection neurons,” J. Neurophysiol., 92, No. 3, 1276–1284 (2004).

    Article  PubMed  Google Scholar 

  • Lapper, S. R., Smith, Y., Sadikot, A. F., et al., “Cortical input to parvalbumin-immunoreactive neurones in the putamen of the squirrel monkey,” Brain Res., 580, No. 1–2, 215–224(1992).

    Article  CAS  PubMed  Google Scholar 

  • Laurent, V., Leung, B., Maidment, N., and Balleine, B. W., “μ-and δ-opioid-related processes in the accumbens core and shell differentially mediate the infl uence of reward-guided and stimulus-guided decisions on choice,” J. Neurosci., 32, No. 5, 1875–1883 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma, Y. Y, Cepeda, C., Chatta, P., et al., “Regional and cell-type-specific effects of DAMGO on striatal D1 and D2 dopamine receptor-expressing medium-sized spiny neurons,” Am. Soc. Neurochem., 4, No. 2, e00077 (2012).

    Google Scholar 

  • Mahanty, N. K. and Sah, P., “Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala,” Nature, 394, No. 6694, 683–687 (1998).

    Article  CAS  PubMed  Google Scholar 

  • McGinty, V. B. and Grace, A. A., “Timing-dependent regulation of evoked spiking in nucleus accumbens neurons by integration of limbic and prefrontal cortical inputs,” J. Neurophysiol., 101, No. 4, 1823–1835 (2009a).

    Article  PubMed Central  PubMed  Google Scholar 

  • McGinty, V. B. and Grace, A. A., “Activity-dependent depression of medial prefrontal cortex inputs to accumbens neurons by the basolateral amygdala,” Neuroscience., 162, No. 4, 1429–1436 (2009b).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mello, L. E., Tan, A. M., and Finch, D. M., “Convergence of projections from the rat hippocampal formation, medial geniculate and basal forebrain onto single amygdaloid neurons: an in vivo extra- and intracellular electrophysiological study,” Brain Res., 587, No. 1, 24–40 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Mizumori, S. J., Yeshenko, O., Gill K. M., and Davis, D. M., “Parallel processing across neural systems: implications for a multiple memory system hypothesis,” Neurobiol. Learn. Mem., 82, No. 3, 278–298 (2004).

    Article  PubMed  Google Scholar 

  • Montaron, M. F., Deniau, J. M., Menetrey, A., et al., “Prefrontal cortex inputs of the nucleus accumbens-nigro-thalamic circuit,” Neuroscience, 71, No. 2, 371–382 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Mulder, A. B., Arts, M. P., and Lopes da Silva, F. H., “Short- and long-term plasticity of the hippocampus to nucleus accumbens and prefrontal cortex pathways in the rat, in vivo,” Eur. J. Neurosci., 9, No. 8, 1603–1611 (1997).

    Article  Google Scholar 

  • Mulder, A. B., Hodenpijl, M. G., and Lopes da Silva, F. H., “Electrophysiology of the hippocampal and amygdaloid projections to the nucleus accumbens of the rat: convergence, segregation, and interaction of inputs,” J. Neurosci., 18, No. 13, 5095–5102 (1998).

    CAS  PubMed  Google Scholar 

  • Nowak, K., Meyza, K, Nikolaev, E., et al., “Local blockade of NMDA receptors in the rat prefrontal cortex increases c-Fos expression in multiple subcortical regions,” Acta Neurobiol. Exp. (Wars)., 72, No. 3, 207–218 (2012).

    Google Scholar 

  • O’Donnell, P. and Grace, A. A., “Physiological and morphological properties of accumbens core and shell neurons recorded in vitro,” Synapse, 13, No. 2, 135–160 (1993).

    Article  PubMed  Google Scholar 

  • O’Donnell, P. and Grace, A. A., “Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input,” J. Neurosci., 15, No. 5, 3622–3639 (1995).

    PubMed  Google Scholar 

  • Papp, E., Borhegyi, Z., Tomioka, R., et al., “Glutamatergic input from specific sources influences the nucleus accumbens-ventral pallidum information fl ow,” Brain Struct. Funct., 217, No. 1, 37–48 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Pennartz, C. M. and Kitai, S. T., “Hippocampal inputs to identifi ed neurons in an in vitro slice preparation of the rat nucleus accumbens: evidence for feed-forward inhibition,” J. Neurosci., 11, No. 9, 2838–2847 (1991).

    CAS  PubMed  Google Scholar 

  • Pikkarainen, M. and Pitkänen, A., “Projections from the lateral, basal and accessory basal nuclei of the amygdala to the perirhinal and postrhinal cortices in rat,” Cereb. Cortex., 11, No. 11, 1064–1082 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Pitkänen, A., Pikkarainen, M., Nurminen, N., and Ylinen, A., “Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review,” Ann, N. Y. Acad. Sci., 911, 369–391 (2000).

    Article  Google Scholar 

  • Polepalli, J. S., Sullivan, R. K., Yanagawa, Y., and Sah, P., “A specific class of interneuron mediates inhibitory plasticity in the lateral amygdala,” J. Neurosci., 30, No. 44, 14,619–14,629 (2010).

    Article  CAS  Google Scholar 

  • Rosenkranz, J. A. and Grace, A. A., “Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo,” J. Neurosci., 22, No. 1, 324–337 (2002).

    CAS  PubMed  Google Scholar 

  • Rosenkranz, J. A. and Grace, A. A., “Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats,” J. Neurosci., 21, No. 11, 4090–4103 (2001).

    CAS  PubMed  Google Scholar 

  • Russchen, F. T., Bakst, I., Amaral, D. G., and Price, J. L., “The amygdalostriatal projections in the monkey. An anterograde tracing study,” Brain Res., 329, No. 1–2, 241–257 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Saunders, R. C. and Rosene, D. L., “A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices,” J. Comp. Neurol., 271, No. 2, 153–184 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Sesack, S. R. and Grace, A. A., “Cortico-basal ganglia reward network: microcircuitry,” Neuropsychopharmacology, 35, No. 1, 27–47 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  • Setlow, B., Holland, P. C., and Gallagher, M., “Disconnection of the basolateral amygdala complex and nucleus accumbens impairs appetitive pavlovian second-order conditioned responses,” Behav. Neurosci., 116, No. 2, 267–275 (2002).

    Article  PubMed  Google Scholar 

  • Sidibe, M. and Smith, Y., “Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium binding proteins,” Neuroscience, 89, No. 4, 1189–1208 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Silkis, I., “The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. I. Modification rules for excitatory and inhibitory synapses in the striatum,” Biosystems, 57, No. 3, 187–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Silkis, I., “The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. II. Mechanism of synergistic modulation of thalamic activity via the direct and indirect pathways through the basal ganglia,” Biosystems, 59, No. 1, 7–14 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Silkis, I. G., “A possible mechanism for the involvement of cortex-basal ganglia-thalamus-cortex circuits in the perception of time,” Usp. Fiziol. Nauk., 42, No. 2, 41–56 (2011).

    CAS  Google Scholar 

  • Silkis, I. G., “A possible mechanism for the involvement of dopaminergic cells and cholinergic interneurons in the striatum in conditioned reflex selection of motor activity,” Zh. Vyssh. Nerv. Deyat., 54, No. 6, 734–749 (2004).

    CAS  Google Scholar 

  • Silkis, I. G., “Involvement of dopamine in strengthening cortical signals activating NMDA receptors in the striatum (a hypothetical mechanism),” Ros. Fiziol. Zh., 87, No. 12, 1569–1578 (2001).

    CAS  Google Scholar 

  • Silkis, I. G., “Simultaneous activation of excitatory and inhibitory inputs as a condition for the induction of homo-, hetero-, and associative longterm depression of excitation,” Zh. Vyssh. Nerv. Deyat., 45, No. 6, 1151–1166 (1995).

    CAS  Google Scholar 

  • Simmons, D. A. and Neill, D. B., “Functional interaction between the basolateral amygdala and the nucleus accumbens underlies incentive motivation for food reward on a fixed ratio schedule,” Neuroscience, 159, No. 4, 1264–1273 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Simonov, P. V., The Motivated Brain, Nauka, Moscow (1987).

    Google Scholar 

  • Shuvaev, V. T. and Suvorov, N. F., The Basal Ganglia and Behavior, Nauka, St. Petersburg (2001).

    Google Scholar 

  • Smith, D. M. and Mizumori, S. J., “Learning-related development of context-specific neuronal responses to places and events: the hippocampal role in context processing,” J. Neurosci., 26, No. 12, 3154–3163 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Spampanato, J., Polepalli, J., and Sah, P., “Interneurons in the basolateral amygdala,” Neuropharmacology, 60, No. 5, 765–773 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Szinyei, C., Heinbockel, T., Montagne, J., and Pape, H. C., “Putative cortical and thalamic inputs elicit convergent excitation in a population of GABAergic interneurons of the lateral amygdala,” J. Neurosci., 20, No. 23, 8909–8915 (2000).

    CAS  PubMed  Google Scholar 

  • Tan, S. E., “Roles of hippocampal NMDA receptors and nucleus accumbens D1 receptors in the amphetamine-produced conditioned place preference in rats,” Brain Res. Bull., 77, No. 6, 412–419 (1988).

    Article  Google Scholar 

  • Tierney, P. L., Degenetais, E., Thierry, A. M., et al., “Infl uence of the hippocampus on interneurons of the rat prefrontal cortex,” Eur. J. Neurosci., 20, No. 2, 514–524 (2004).

    Article  PubMed  Google Scholar 

  • Van Dongen, Y. C., Mailly, P., Thierry, A. M., Groenewegen, H. J., and Deniau, J. M., “Three-dimensional organization of dendrites and local axon collaterals of shell and core medium-sized spiny projection neurons of the rat nucleus accumbens,” Brain Struct. Funct., 213, No. 1–2, 129–147 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  • Wright, C. I. and Groenewegen, H. J., “Patterns of overlap and segregation between insular cortical, intermediodorsal thalamic and basal amygdaloid afferents in the nucleus accumbens of the rat,” Neuroscience, 73, No. 2, 359–373 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Xia, Y., Driscoll, J. R., Wilbrecht, L., et al., “Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area,” J. Neurosci., 31, No. 21, 7811–7816 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Yeshenko, O., Guazzelli, A., and Mizumori, S. J., “Context-dependent reorganization of spatial and movement representations by simultaneously recorded hippocampal and striatal neurons during performance of allocentric and egocentric tasks,” Behav. Neurosci., 118, No. 4, 751–769 (2004).

    Article  PubMed  Google Scholar 

  • Yilmazer-Hanke, D. M., Faber-Zuschratter, H., Blümcke, I., et al., “Axosomatic inhibition of projection neurons in the lateral nucleus of amygdala in human temporal lobe epilepsy: an ultrastructural study,” Exp. Brain Res., 177, No. 3, 384–399 (2007)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Silkis.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 64, No. 1, pp. 82–100, January–February, 2014. Original

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silkis, I.G. Mechanisms of the Interdependent Influences of the Prefrontal Cortex, Hippocampus, and Amygdala on the Functioning of the Basal Ganglia and the Selection of Behavior. Neurosci Behav Physi 45, 729–742 (2015). https://doi.org/10.1007/s11055-015-0137-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0137-1

Keywords

Navigation