Skip to main content

Advertisement

Log in

Expression of the FGF2 and TIMP1 Genes in the Adult Rat Brain after Administration of Interleukin-1β during Early Postnatal Ontogeny

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Hypotheses relating to the developmental nature of cognitive impairments in schizophrenia and other neuropathologies propose that the development of stable cognitive deficit involves important roles for hypoxia, trauma, and infections operating during the prenatal and early postnatal periods. These pathological states are accompanied by increases in the production of proinflammatory cytokine interleukin-1β (IL-1β) in cells of the nervous and immune systems. We report here studies of the characteristics of the expression of the Fgf1 and Timp1 genes, which are involved in regulating the cerebral mechanisms of neuroplasticity, in cells of the medial prefrontal cortex and the dorsal and ventral areas of the hippocampus in adult rats given IL-1β during early postnatal ontogeny. Experiments were performed in standard conditions and on acquisition of a conditioned active avoidance reflex. Learning impairments in experimental animals were accompanied by decreased production of FGF-2 mRNA in cells of the medial prefrontal cortex and ventral hippocampus. There were no differences between groups in conditions without cognitive loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. V. Gulyaeva, “Effects of stress factors on the functioning of the hippocampus in the adult brain: molecular-cellular mechanisms and the dorsoventral gradient,” Ros. Fiziol. Zh., 99, No. 1, 3–16 (2013).

    CAS  Google Scholar 

  2. O. E. Zubareva, A. P. Eliseeva, A. S. Simbirtsev, and V. M. Klimenko, “Effects of proinflammatory cytokines on the establishment of behavior in early postnatal ontogeny,” Ros. Fiziol. Zh., 91, No. 4, 374–784 (2005).

    CAS  Google Scholar 

  3. O. E. Zubareva, K. P. Shcherbakova, S. V. Kalemenev, et al., “Impairments to conditioned reflex activity in adult rats after administration of IL-1β in early postnatal ontogeny,” Zh. Vyssh. Nerv. Deyat., 61, No. 6, 736–741 (2011).

    CAS  Google Scholar 

  4. V. M. Klimenko, O. E. Zubareva, and I. N. Krasnova, “The role of intra cerebral IL-1 receptors in modulating the body’s homeostatic reactions,” Neirokhimiya, 12, No. 2, 16–22 (1995).

  5. V. M. Klimenko and O. E. Zubareva, “The neurobiology of cytokines, behavior, and adaptive reactions,” Ros. Fiziol. Zh., 85, No. 9, 1244–1254 (1999).

    CAS  Google Scholar 

  6. A. N. Trofimov, O. E. Zubareva, A. S. Simbirtsev, and V. M. Klim enko, “Effects of neonatal increases in IL-1β levels on the formation of spatial memory in adult rats,” Ros. Fiziol. Zh., 98, No. 6, 782–792 (2012).

  7. H. Aly, L. Abd-Rabboh, M. El-Dib, et al., “Ascorbic acid combined with ibuprofen in hypoxic ischemic encephalopathy: a randomized controlled trial,” J. Perinatol., 29, No. 6, 438–443 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. E. Ban, G. Milon, N. Prudhomme, et al., “Receptors for interleukin-1 (alpha and beta) in mouse brain: mapping and neuronal localization in hippocampus,” Neuroscience, 43, No. 1, 21–30 (1991).

  9. N. Bednarek, P. Svedin, R. Garnotel, et al., “Increased MMP-9 and TIMP-1 in mouse neonatal brain and plasma and in human neonatal plasma after hypoxia-ischemia: a potential marker of neonatal encephalopathy,” Pediatr. Res., 71, No. 1, 63–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. F. P. Bellinger, S. Madamba, and G. R. Siggins, “Interleukin-1 beta inhibits synaptic strength and long-term potentiation in the rat CA I hippocampus,” Brain Res., 628, No. 1–2, 227–234 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. S. D. Bilbo, R. M. Barrientos, A. S. Eads, et al., “Early-life infection leads to altered BDNF and IL-1 beta mRNA expression in rat hippocampus following learning in adulthood,” Brain Behav. Immun., 22, No. 4, 451–455 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. G. Bregola, L. Frigati, S. Zucchini, and M. Simonato, “Different patterns of induction of fibroblast growth factor-2 and brain-derived neurotrophic factor messenger RNAs during kindling epileptogenesis and development of a herpes simplex vector for fibroblast growth factor-2 gene transfer in vivo,” Epilepsia, 41, No. 6, S122–126 (2000).

  13. F. A. Chaillan, S. Rivera, E. Marchetti, et al., “Involvement of tissue inhibition of metalloproteinases-1 in learning and memory in mice,” Behav. Brain Res., 173, No. 2, 191–198 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. K. Chan, P. C. Guest, Y. Levin, et al., “Biomarkers of Neurological and Psychiatric Disease,” Int. Rev. Neurobiol., 101, 95–144 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. S. J. Crampton, L. M. Collins, A. Toulouse, et al., “Exposure of foetal neural progenitor cells to IL-1β impairs their proliferation and alters their differentiation – a role for maternal inflammation?” J. Neurochem., 120, No. 6, 964–973 (2012).

    CAS  PubMed  Google Scholar 

  16. Q. J. Cui, L. Y. Wang, Z. X. Wei, and W. S. Qu, “Continual naringin treatment benefits the recovery of traumatic brain injury in rats through reducing oxidative and inflammatory alterations,” Neurochem. Res. [Epub ahead of print] (2014).

  17. K. Cui, H. Ashdown, G. N. Luheshi, and P. Boksa, “Effects of prenatal immune activation on hippocampal neurogenesis in the rat,” Schizophr. Res., 113, 288–297 (2009).

    Article  PubMed  Google Scholar 

  18. J. Czerniawski, T. Yoon, and T. Otto, “Dissociating space and trace in dorsal and ventral hippocampus,” Hippocampus, 19, No. 1, 20–32 (2009).

  19. F. Dal-Pizzol, H. A. Rojas, E. M. Dos Santos, et al., “Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis,” Mol. Neurobiol., 48, No. 1, 62–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. E. S. J. M. De Bont, A. M. Martens, J. Van Raan, et al., “Tumor necrosis factor-α, interleukin-1β, and interleukin-6 plasma levels in neonatal sepsis,” Pediatr. Res., 33, 380–383 (1993).

    PubMed  Google Scholar 

  21. M. Escobar, N. Crouzin, M. Cavalier, et al., “Early, time-dependent disturbances of hippocampal synaptic transmission and plasticity after in utero immune challenge,” Biol. Psychiatry, 70, 992–999 (2011).

    Article  PubMed  Google Scholar 

  22. C. Feng, C. Zhang, X. Shao, et al., “Enhancement of nose-to-brain delivery of basic fibroblast growth factor for improving rat memory impairments induced by co-injection of β-amyloid and ibotenic acid into the bilateral hippocampus,” Int. J. Pharm., 423, No. 2, 226–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. C. Flores, J. Stewart, N. Salmaso, et al., “Astrocytic basic fibroblast growth factor expression in dopaminergic regions after perinatal anoxia,” Biol. Psychiatry, 52, No. 4, 362–370 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. F. Fumagalli, F. Bedogni, M. E. Maragnoli, et al., “Dopaminergic D2 receptor activation modulates FGF-2 gene expression in rat prefrontal cortex and hippocampus,” J. Neurosci. Res., 74, No. 1, 74–80 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Y. Ganat, S. Soni, M. Chacon, et al., “Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor responsive radial glial cells in the sub-ependymal zone,” Neuroscience, 112, No. 4, 977–991 (2002).

  26. F. Gómez-Pinilla, V. So, and J. P. Kesslak, “Spatial learning and physical activity contribute to the induction of fibroblast growth factor: neural substrates for increased cognition associated with exercise,” Neuroscience, 85, No. 1, 53–61 (1998).

  27. I. Goshen, T. Kreisel, H. Ounallah-Saad, et al., “A dual role for interleukin-1 in hippocampal-dependent memory processes,” Psychoneuroendocrinology, 32, No. 8–10, 1106–1115 (2007).

  28. B. M. Graham and R. Richardson, “Memory of fearful events: the role of fibroblast growth factor-2 in fear acquisition and extinction,” Neuroscience, 189, 156–169 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. H. F. Green, E. Treacy, A. K. Keohane, et al., “A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells,” Mol. Cell. Neurosci., 49, No. 3, 311–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. H. Hagberg, P. Gressens, and C. Mallard, “Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults,” Ann. Neurol., 71, No. 4, 444–457 (2012).

    Article  PubMed  Google Scholar 

  31. J. Ishiyama, H. Saito, and K. Abe, “Epidermal growth factor and basic fibroblast growth factor promote the generation of long-term potentiation in the dentate gyrus of anaesthetized rats,” Neurosci. Res., 12, No. 3, 403–411 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. K. Järlestedt, A. S. Naylor, J. Dean, et al., “Decreased survival of newborn neurons in the dorsal hippocampus after neonatal LPS exposure in mice,” Neuroscience, 253, 21–28 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. T. A. Jenkins, M. K. Harte, G. Stenson, and G. P. Reynolds, “Neonatal lipopolysaccharide induces pathological changes in parvalbumin immunoreactivity in the hippocampus of the rat,” Behav. Brain Res., 205, No. 2, 355–359 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. J. Jourquin, E. Tremblay, A. Bernard, et al., “Tissue inhibitor of metalloproteinases-1 (TIMP-1) modulates neuronal death, axonal plasticity and learning and memory,” Eur. J. Neurosci., 22, No. 10, 2569–2578 (2005).

    Article  PubMed  Google Scholar 

  35. A. Kabiersch, H. Furukawa, A. del Rey, and H. O. Besedovsky, “Administration of interleukin-1 at birth affects dopaminergic neurons in adult mice,” Ann. NY Acad. Sci., 840, 123–127 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. H. Katsuki, S. Nakai, Y. Hirai, et al., “Interleukin-1β inhibits longterm potentiation in the CA3 region of mouse hippocampal slices,” Eur. J. Pharmacol., 181, No. 3, 323–326 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. H. M. Liu, H. B. Yang, and R. M. Chen, “Expression of basic fibroblast growth factor, nerve growth factor, platelet-derived growth factor and transforming growth factor-beta in human brain abscess,” Acta Neuropathol., 88, No. 2, 143–150 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method,” Methods, 25, No. 4, 402–408 (2001).

  39. J. McAfoose and B. T. Baune, “Evidence for a cytokine model of cognitive function,” Neurosci. Biobehav. Rev., 33, 355–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. R. Marek, C. Strobel, T. W. Bredy, and P. Sah, “The amygdala and medial prefrontal cortex: partners in the fear circuit,” J. Physiol., 591, No. 10, 2381–2391 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. U. Meyer, “Developmental neuroinflammation and schizophrenia Developmental,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 42, 20–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. A. M. Nolan, Y. M. Nolan, and G. W. O’Keeffe, “IL-1β inhibits axonal growth of developing sympathetic neurons,” Mol. Cell. Neurosci., 48, No. 2, 142–150 (2011).

  43. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press Elsevier, Burlington (2005), 5th ed.

  44. B. Reuss, von Bohlen, and O. Halbach, “Fibroblast growth factors and their receptors in the central nervous system,” Cell Tiss. Res., 313, No. 2, 139–157 (2003).

  45. S. Rivera, S. J. Gold, and C. M. Gall, “Interleukin-1 beta increases basic fibroblast growth factor mRNA expression in adult rat brain and organotypic hippocampal cultures,” Brain Res. Mol. Brain Res., 27, No. 1, 12–26 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. V. Shukla, S. A. Kumar, T. N. Dhole, and U. K. Misra, “Upregulated expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in BALB/c mouse brain challenged with Japanese encephalitis virus,” Neuroimmunomodulation, 19, No. 4, 241–254 (2012).

  47. H. E. Stevens, G. Y. Jiang, M. L. Schwartz, and F. M. Vaccarino, “Learning and memory depend on fibroblast growth factor receptor 2 functioning in hippocampus,” Biol. Psychiatry, 71, No. 12, 1090–1098 (2012).

  48. A. F. Terwisscha van Scheltinga, S. C. Bakker, and R. S. Kahn, “Fibroblast growth factors in schizophrenia,” Schizophr. Bull., 36, No. 6, 1157–1166 (2010).

    Article  PubMed  Google Scholar 

  49. L. Tong and W. Zhang, “Fetal hypoxia and programming of matrix metalloproteinases,” Drug Discov. Today, 17, No. 3–4, 124–134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. K. M. Wilczynska, S. M. Gopalan, M. Bugno, et al., “A novel mechanism of tissue inhibitor of metalloproteinases-1 activation by interleukin-1 in primary human astrocytes,” J. Biol. Chem., 281, No. 46, 34,955–34,964 (2006).

    Article  CAS  Google Scholar 

  51. J. W. Wright and J. W. Harding, “Contributions of matrix metalloproteinases to neural plasticity, habituation, associative learning and drug addiction,” Neural Plast., Article ID 579382 (2009).

  52. M. Zhao, D. Li, K. Shimazu, Y. X. Zhou, et al., “Fibroblast growth factor receptor-1 is required for long-term potentiation, memory consolidation and neurogenesis,” Biol. Psychiatry, 62, No. 5, 381–390 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Trofimov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 100, No. 9, pp. 1025–1037, September, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trofimov, A.N., Zubareva, O.E., Shvarts, A.P. et al. Expression of the FGF2 and TIMP1 Genes in the Adult Rat Brain after Administration of Interleukin-1β during Early Postnatal Ontogeny. Neurosci Behav Physi 46, 413–420 (2016). https://doi.org/10.1007/s11055-016-0252-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0252-7

Keywords

Navigation