Skip to main content
Log in

Effects of Glycine and GABA on Monosynaptic EPSP in Frog Motoneurons

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We report here our studies of the effects of the inhibitory transmitters glycine and GABA on monosynaptic EPSP recorded in response to microstimulation of presynaptic fibers (PF PSP) close to the bodies of motoneurons in the isolated frog spinal cord. Monosynaptic PF PSP had two components, mediated by AMPA/KA and NMDA receptors. Blockade of NMDA receptors was used to analyze the characteristics of the AMPA/KA and NMDA components of PF PSP. The amplitude of the NMDA component was 20% of PF PSP amplitude. The areas under the curves of the AMPA/KA and NMDA components were 78% and 22% respectively of the area of the PF PSP. Glycine and GABA had little effect on PF PSP, but significantly decreased the decay time constant (τdecay), by an average of 33.4 ± 4.0% (n = 18) on application of glycine and by 40.2 ± 3.6% (n = 18) on application of GABA. Blockade of NMDA receptors with DL-2-amino-5-phosophonovaleric acid (AP5) decreased the effects of glycine and GABA on the time constant. Effects were reversible and the amplitude and time characteristics of responses recovered in normal solution. Assessment of the inhibitory influences of glycine and GABA on each of the components of PF PSP showed that suppression of the NMDA component produced a greater proportionate effect than suppression of the AMPA/KA component. These results show that the inhibitory effects of glycine and GABA on the monosynaptic EPSP of motoneurons are mediated mainly by the NMDA component, with a small influence from the AMPA/KA component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Velumyan, “Intracellular analysis of the effects of microapplication of various amino acids on lumbar motoneurons in the frog Rana ridibunda,” Zh. Evolyuts. Biokhim. Fiziol., 13, No. 3, 407–409 (1977).

    CAS  Google Scholar 

  2. N. I. Kalinina, G. G. Kurchavyi, D. V. Amakhin, and N. P. Veselkin, “Differences in the activation of inhibitory receptors of motoneurons in the frog Rana ridibunda by glycine and their interaction,” Ros. Fiziol. Zh., 94, No. 9, 1005–1016 (2008).

    CAS  Google Scholar 

  3. N. I. Kalinina, G. G. Kurchavyi, and N. P. Veselkin, “Inhibitory regulation of the responses of glutamate receptors in frog motoneurons,” Ros. Fiziol. Zh., 98, No. 5, 575–587 (2012).

    CAS  Google Scholar 

  4. N. I. Kalinina, G. G. Kurchavyi, and B. T. Ryabov, “Equilibrium potential of monosynaptic EPSP in frog motoneurons,” Neirofizilogiya, 18, No. 4, 534–541 (1986).

    CAS  Google Scholar 

  5. G. G. Kurchavyi, N. I. Kalinina, and N. P. Veselkin, “The different sensitivities of the synaptic inputs of frog motoneurons to excitatory amino acid antagonists,” Zh. Evolyuts. Biokhim. Fiziol., 39, 144–153 (2003).

    CAS  Google Scholar 

  6. G. G. Kurchavyi, N. I. Kalinina, and N. P. Veselkin, “Effects of GABA and glycine on postsynaptic potentials in frog motoneurons,” Zh. Evolyuts. Biokhim. Fiziol., 41, No. 6, 522–531 (2005).

    Google Scholar 

  7. G. G. Kurchavyi, N. I. Kalinina, and N. P. Veselkin, “The contributions of glycine and GABAA receptors to the generation of inhibitory postsynaptic potentials in frog spinal cord motoneurons,” Ros. Fiziol. Zh., 96, No. 6, 553–565 (2010).

    CAS  Google Scholar 

  8. G. G. Kurchavyi, N. I. Kalinina, Z. E. Mel’yan, and N. P. Veselkin, “Potentiation of postsynaptic potentials in response to glutamate and agonists in motoneurons in the frog Rana ridibunda,” Zh. Evolyuts. Biokhim. Fiziol., 31, No. 4, 430–443 (1995).

    CAS  Google Scholar 

  9. Z. A. Tamarova, “Excitatory postsynaptic potentials in frog lumbar motoneurons evoked by stimulation of muscle and cutaneous nerves,” Fiziol. Zh. SSSR, 63, No. 6, 806–813 (1977).

    CAS  PubMed  Google Scholar 

  10. J. Eccles, The Physiology of Synapses [Russian translation], Mir, Moscow (1964).

    Book  Google Scholar 

  11. P. R. Adams and D. B. Pixner, “Excitation of frog spinal motoneurones by glycine,” J. Physiol., 240, 67P–58P (1975).

    Google Scholar 

  12. A. L. Babalian and A. I. Shapovalov, “Synaptic actions produced by individual ventrolateral tract fi bres in frog lumbar motoneurones,” Exp. Brain Res., 54, 551–563 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. E. Ben-Ari, J.-L. Gaiarsa, R. Tyzio, and R. Khazipov, “GABA: A pioneer transmitter that excites immature neurons and generates primitive oscillations,” Physiol. Rev., 87, 1215–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. A. Cupello, “Neuronal transmembrane chloride electrochemical gradient: a key player in GABA A receptor activation physiological effect,” Amino Acids, 24, No. 4, 335–346 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. J. Davies, E. H. Evans, A. W. Jones, et al., “Differential activation and blockade of excitatory amino acid receptors in the mammalian and amphibian central nervous systems,” Comp. Biochem. Physiol., 72C, 211–224 (1982).

    CAS  Google Scholar 

  16. M. Farrant and K. Kaila, “The cellular, molecular and ionic basis of GABA(A) receptor signalling,” Prog. Brain Res., 160, 59–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. L.-Y. Fu and A. N. van den Pol, “GABA excitation in mouse hilar neuropeptide Y neurons,” J. Physiol., 579, No. 2, 445–464 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. S. Hyngstrom, M. D. Jonson, and C. J. Heckman, “Summation of excitatory and inhibitory synaptic inputs by motoneurons with highly active dendrites,” J. Neurophysiol., 99, 1643–1652 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ye. Jiang-Hong, “Regulation of excitation by glycine receptors,” in: Inhibitory Regulation of Excitatory Neurotransmission, M. G. Darlison (ed.), Springer (2008).

  20. W. Kilb, I. L. Hanganu, A. Okabe, et al., “Glycine receptors mediate excitation of subplate neurons in neonatal rat cerebral cortex,” J. Neurophysiol., 100, 698–707 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. E.-A. Lee, J.-H. Choi, M. Nakamura, et al., “Presynaptic glycine receptors facilitate spontaneous glutamate release onto hilar neurons in the rat hippocampus,” J. Neurochem., 109, 275–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. P. Legendre, “The glycinergic inhibitory synapse,” Cell. Mol. Life Sci., 58, 760–793 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. N. J. Leidenheimer, “Regulation of excitation by GABAA receptor internalization,” in: Inhibitory Regulation of Excitatory Neurotra nsmission, M. G. Darlison (ed.), Springer (2008).

  24. S. Minota, T. Miyazaki, M. Y. Wang, et al., “Glycine potentiates NMDA responses in rat hippocampal CA1 neurons,” Neurosci. Lett., 100, 237–242 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. S. V. Ovsepian and N. P. Vesselkin, “Dual effect of GABA on descending monosynaptic excitatory postsynaptic potential in frog lumbar motoneurons,” J. Neurosci., 129, 639–646 (2004).

    Article  CAS  Google Scholar 

  26. J. C. Rekling, G. D. Funk, D. A. Bayliss, et al., “Synaptic control of motoneuronal excitability,” Physiol. Rev., 80, No. 2, 767–852 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. V. Stein and R. A. Nicoll, “GABA generates excitement,” Neuron, 37, No. 3, 375–378 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. R. Turecek and L. O. Trussell, “Presynaptic glycine receptors enhance transmitter release at mammalian central synapse,” Nature, 411, No. 6837, 587–590 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. M. C. Walker and A. Semyanov, “Regulation of excitability by extrasynaptic GABAA receptors,” in: Inhibitory Regulation of Excitatory Neurotransmission, M. G. Darlison (ed.), Springer (2008).

  30. K. Zito and C. Scheuss, “NMDA-receptor function and physiological modulation,” in: Encyclopedia of Neuroscience, L. R. Squire (ed.) (2009), Vol. 6, pp. 1157–1164.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Kalinina.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 101, No. 8, pp. 885–897, August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, N.I., Kurchavyi, G.G. & Veselkin, N.P. Effects of Glycine and GABA on Monosynaptic EPSP in Frog Motoneurons. Neurosci Behav Physi 47, 17–24 (2017). https://doi.org/10.1007/s11055-016-0361-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0361-3

Keywords

Navigation