Skip to main content
Log in

Molecular Mechanisms of the Effects of Metformin on the Functional Activity of Brain Neurons

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Metformin (MF) is the most widely used drug for the treatment of type 2 diabetes mellitus and metabolic syndrome (MS). In the peripheral tissues, MF inhibits mitochondrial respiratory chain complex I and increases the activity of AMP-activated protein kinase (AMPK), leading to suppression of gluconeogenesis in the liver, increased insulin sensitivity, increased glucose utilization, and normalization of lipid metabolism. Recent years have seen the appearance of experimental and clinical evidence showing that the CNS is also a major target of MF, such that the action of MF on the functional state of neurons can be mediated both via AMPK-dependent and via AMPK-independent signal cascades. In contrast to the periphery, MF does not activate but suppresses AMPK activity in hypothalamic neurons, this influencing the ratio of anorexigenic (melanocortin peptides) and orexigenic (neuropeptide Y) factors and altering feeding behavior. A significant contribution to this effect is made by MF-induced activation of the leptin-dependent STAT3 signal cascade. As the leptin and melanocortin systems targeted by MF interact closely with the insulin and monoamine systems, MF, acting through them, affects the entire integrative signal system of the brain, on which the functioning of the nervous, endocrine, cardiovascular, and other body systems depend. This review analyzes and systematizes data on the molecular mechanisms and targets of the action of MF in brain neurons, and the effects of this drug, which are mediated or may be mediated by the interactions of MF with the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Derkach, L. A. Kuznetsova, T. S. Sharova, P. A. Ignat’eva, V. M. Bondareva, and A. O. Shpakov, “Effects of prolonged metformin treatment on the activity of the adenylate cyclase system and NO synthase in the brain and myocardium of rats with obesity,” Tsitologiya, 57, No. 5, 360–369 (2015).

    CAS  Google Scholar 

  2. K. V. Derkach, I. B. Sukhov, L. A. Kuznetsova, D. M. Buzanakov, and A. O. Shpakov, “Functional activity of hypothalamic signal systems during metformin treatment of rats with neonatal diabetes mellitus,” Dokl. Akad. Nauk., 467, No. 2, 222–225 (2016).

    Google Scholar 

  3. A. O. Shpakov, “The leptin signal system of the brain and its functional state in conditions of metabolic syndrome and type 2 diabetes mellitus,” Zh. Evolyuts. Biokhim. Fiziol., 52, No. 3, 161–176 (2016).

    Google Scholar 

  4. A. O. Shpakov and K. V. Derkach, “The melanocortin signal system of the hypothalamus and its functional state in conditions of type 2 diabetes mellitus and metabolic syndrome,” Ros. Fiziol. Zh. im. I. M. Sechenova, 102, No. 1, 18–40 (2016).

    CAS  Google Scholar 

  5. H. An and L. He, “Current understanding of metformin effect on the control of hyperglycemia in diabetes,” J. Endocrinol., 228, No. 3, R97–R106 (2016).

    Article  CAS  Google Scholar 

  6. G. Aubert, V. Mansuy, M. J. Voirol, L. Pellerin, and F. P. Pralong, “The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression,” Metabolism, 60, No. 3, 327–334 (2011).

    Article  CAS  Google Scholar 

  7. M. P. Baruah, S. Kalra, and S. Ranabir, “Metformin; A character actor in the leptin story!,” Ind. J. Endocrinol. Metab., 16 (Supplement 3), S532–S533 (2012).

    Article  Google Scholar 

  8. J. A. Bayliss, M. B. Lemus, V. V. Santos, M. Deo, J. S. Davies, B. E. Kemp, J. D. Elsworth, and Z. B. Andrews, “Metformin prevents nigrostriatal dopamine degeneration independent of AMPK activation in dopamine neurons,” PLoS One, 11, No. 7, e0159381 (2016).

    Article  Google Scholar 

  9. M. S. Beeri, J. Schmeidler, J. M. Silverman, S. Gandy, M. Wysocki, C. M. Hannigan, D. P. Purohit, G. Lesser, H. T. Grossman, and V. Haroutunian, “Insulin in combination with other diabetes medication is associated with less Alzheimer neuropathology,” Neurology, 71, 750–757 (2008).

    Article  CAS  Google Scholar 

  10. R. Carvajal, C. Rosas, K. Kohan, F. Gabler, D. Vantman, C. Romero, and M. Vega, “Metformin augments the levels of molecules that regulate the expression of the insulin-dependent glucose transporter GLUT4 in the endometria of hyperinsulinemic PCOS patients,” Hum. Reprod., 28, No. 8, 2235–2244 (2013).

    Article  CAS  Google Scholar 

  11. C. Chau-Van, M. Gamba, R. Salvi, R. C. Gaillard, and F. P. Pralong, “Metformin inhibits adenosine 5’-monophosphate-activated kinase activation and prevents increases in neuropeptide Y expression in cultured hypothalamic neurons,” Endocrinology, 148, 507–511 (2007).

    Article  CAS  Google Scholar 

  12. Y. Chen, K. Zhou, R. Wang, Y. Liu, Y. D. Kwak, T. Ma, R. C. Thompson, Y. Zhao, L. Smith, L. Gasparini, Z. Luo, H. Xu, and F. F. Liao, “Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription,” Proc. Natl. Acad. Sci. USA, 106, No. 10, 3907–3912 (2009).

    Article  CAS  Google Scholar 

  13. D. Cota, K. Proulx, K. A. Smith, S. C. Kozma, G. Thomas, S. C. Woods, and R. J. Seeley, “Hypothalamic mTOR signaling regulates food intake,” Science, 312, No. 5775, 927–930 (2006).

    Article  CAS  Google Scholar 

  14. Y. Dagon, E. Hur, B. Zheng, K. Wellenstein, L. C. Cantley, and B. B. Kahn, “p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake,” Cell Metab., 16, No. 1, 104–112 (2012).

    Article  CAS  Google Scholar 

  15. Y. Duan, R. Zhang, M. Zhang, L. Sun, S. Dong, G. Wang, J. Zhang, and Z. Zhao, “Metformin inhibits food intake and neuropeptide Y gene expression in the hypothalamus,” Neural Regen. Res, 8, 2379–2388 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Dulovic, M. Jovanovic, M. Xilouri, L. Stefanis, L. Harhaji-Trajkovic, T. Kravic-Stevovic, V. Paunovic, M. T. Ardah, O. M. El-Agnaf, V. Kostic, I. Markovic, and V. Trajkovic, “The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro,” Neurobiol. Dis., 63, 1–11 (2014).

    Article  CAS  Google Scholar 

  17. L. J. Fick, G. H. Fick, and D. D. Belsham, “Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons,” Biochem. Biophys. Res. Commun., 413, No. 3, 414–419 (2011).

    Article  CAS  Google Scholar 

  18. R. J. Ford, M. D. Fullerton, S. L. Pinkosky, E. A. Day, J. W. Scott, J. S. Oakhill, A. L. Bujak, B. K. Smith, J. D. Crane, R. M. Blumer, K. Marcinko, B. E. Kemp, H. C. Gerstein, and G. R. Steinberg, “Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity,” Biochem. J., 468, 125–132 (2015).

    Article  CAS  Google Scholar 

  19. M. O. Goodarzi and M. Bryer-Ash, “Metformin revisited: re-evaluation of its properties and role in the pharmacopoeia of modern antidiabetic agents,” Diab. Obes. Metab., 7, No. 6, 654–665 (2005).

    Article  CAS  Google Scholar 

  20. S. A. Hawley, M. D. Fullerton, F. A. Ross, J. D. Schertzer, C. Chevtzoff, K. J. Walker, M. W. Peggie, D. Zibrova, K. A. Green, K. J. Mustard, B. E. Kemp, K. Sakamoto, G. R. Steinberg, and D. G. Hardie, “The ancient drug salicylate directly activates AMPactivated protein kinase,” Science, 336, No. 6083, 918–922 (2012).

    Article  CAS  Google Scholar 

  21. S. A. Hawley, D. A. Pan, K. J. Mustard, L. Ross, J. Bain, A. M. Edelman, B. G. Frenguelli, and D. G. Hardie, “Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase,” Cell. Metab., 2, 9–19 (2005).

    Article  CAS  Google Scholar 

  22. M. Hou, N. Venier, L. Sugar, M. Musquera, M. Pollak, A. Kiss, N. Fleshner, L. Klotz, and V. Venkateswaran, “Protective effect of metformin in CD1 mice placed on a high carbohydrate-high fat diet,” Biochem. Biophys. Res. Commun., 397, 537–542 (2010).

    Article  CAS  Google Scholar 

  23. L. Huai, C. Wang, C. Zhang, Q. Li, Y. Chen, Y. Jia, Y. Li, H. Xing, Z. Tian, Q. Rao, M. Wang, and J. Wang, “Metformin induces differentiation in acute promyelocytic leukemia by activating the MEK/ERK signaling pathway,” Biochem. Biophys. Res. Commun., 422, No. 3, 398–404 (2012).

    Article  CAS  Google Scholar 

  24. P. Imfeld, M. Bodmer, S. S. Jick, and C. R. Meier, “Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study,” J. Am. Geriatr. Soc., 60, 916–921 (2012).

    Article  Google Scholar 

  25. J. Jin, H. Gu, N. M. Anders, T. Ren, M. Jiang, M. Tao, Q. Peng, M. A. Rudek, and W. Duan, “Metformin protects cells from mutant Huntingtin toxicity through activation of AMPK and modulation of itochondrial dynamics,” Neuromolecular. Med, 18, No. 4, 581–592 (2016).

    Article  CAS  Google Scholar 

  26. I. Kawashima, T. Mitsumori, Y. Nozaki, T. Yamamoto, Y. Shobu-Sueki, K. Nakajima, and K. Kirito, “Negative regulation of the LKB1/AMPK pathway by ERK in human acute myeloid leukemia cells,” Exp. Hematol., 43, No. 7, 524–533 (2015).

    Article  CAS  Google Scholar 

  27. H. J. Kim, E. Y. Park, M. J. Oh, S. S. Park, K. H. Shin, S. H. Choi, B. G. Chun, and D. H. Kim, “Central administration of metformin into the third ventricle of C57BL/6 mice decreases meal size and number and activates hypothalamic S6 kinase,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 305, R499–R505 (2013).

    Article  CAS  Google Scholar 

  28. C. K. Lee, Y. J. Choi, S. Y. Park, J. Y. Kim, K. C. Won, and Y. W. Kim, “Intracerebroventricular injection of metformin induces anorexia in rats,” Diabetes Metab. J., 36, 293–299 (2012).

    Article  Google Scholar 

  29. W. S. Li, J. P. Wen, L. Li, R. X. Sun, J. Wang, Y. X. Xian, C. X. Cao, Y. L. Wang, and Y. Y. Gao, “The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats,” Brain Res., 1444, 11–19 (2012).

    Article  Google Scholar 

  30. A. Malki and A. Youssef, “Antidiabetic drug metformin induces apoptosis in human MCF breast cancer via targeting ERK signaling,” Oncol. Res., 19, No. 6, 275–285 (2011).

    Article  Google Scholar 

  31. T. L. Martin, T. Alquier, K. Asakura, N. Furukawa, F. Preitner, and B. B. Kahn, “Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle,” J. Biol. Chem., 281, No. 28, 18933–18941 (2006).

    Article  CAS  Google Scholar 

  32. Y. Matsui, Y. Hirasawa, T. Sugiura, T. Toyoshi, K. Kyuki, and M. Ito, “Metformin reduces body weight gain and improves glucose intolerance in high-fat diet-fed C57BL/6J mice,” Biol. Pharm. Bull., 33, 963–970 (2010).

    Article  CAS  Google Scholar 

  33. J. B. McGill, “Pharmacotherapy in type 2 diabetes: a functional schema for drug classification,” Curr. Diabetes Rev., 8, 257–267 (2012).

    Article  CAS  Google Scholar 

  34. Y. Minokoshi, T. Alquier, N. Furukawa, Y. B. Kim, A. Lee, B. Xue, J. Mu, F. Foufelle, P. Ferre, M. J. Birnbaum, B. J. Stuck, and B. B. Kahn, “AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus,” Nature, 428, 569–574 (2004).

    Article  CAS  Google Scholar 

  35. D. M. Nathan, J. B. Buse, M. B. Davidson, E. Ferrannini, R. R. Holman, R. Sherwin, and B. Zinman, “Medical management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the initiation and adjustment of therapy: consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes,” Diabetologia, 52, No. 1, 17–30 (2009).

    Article  CAS  Google Scholar 

  36. G. Paolisso, L. Amato, R. Eccellente, A. Gambardella, M. R. Tagliamonte, G. Varricchio, C. Carella, D. Giugliano, and F. D’Onofrio, “Effect of metformin on food intake in obese subjects,” Eur. J. Clin. Invest., 28, 441–446 (1998).

    Article  CAS  Google Scholar 

  37. P. Picone, D. Nuzzo, L. Caruana, E. Messina, A. Barera, S. Vasto, and M. Di Carlo, “Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-kB activation: use of insulin to attenuate metformin’s effect,” Biochim. Biophys. Acta, 1853, 1046–1059 (2015).

    Article  CAS  Google Scholar 

  38. P. Picone, S. Vilasi, F. Librizzi, M. Contardi, D. Nuzzo, L. Caruana, S. Baldassano, A. Amato, F. Mulè, P. L. San Biagio, D. Giacomazza, and M. Di Carlo, “Biological and biophysics aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates,” Aging (Albany NY), 8, No. 8, 1718–1734 (2016).

    Article  CAS  Google Scholar 

  39. Y. Saisho, “Metformin and inflammation: its potential beyond glucose-lowering effect,” Endocr. Metab. Immune Disord. Drug Targets., 15, No. 3, 196–205 (2015).

    Article  CAS  Google Scholar 

  40. R. J. Shaw, M. Kosmatka, N. Bardeesy, R. L. Hurley, L. A. Witters, R. A. DePinho, and L. C. Cantley, “The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress,” Proc. Natl. Acad. Sci. USA, 101, No. 10, 3329–3335 (2004).

    Article  CAS  Google Scholar 

  41. R. J. Shaw, K. A. Lamia, D. Vasquez, S. H. Koo, N. Bardeesy, R. A. Depinho, M. Montminy, and L. C. Cantley, “The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin,” Science, 310, 1642–1646 (2005).

    Article  CAS  Google Scholar 

  42. A. O. Shpakov, K. V. Derkach, and L. M. Berstein, “Brain signaling systems in the type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases,” Future Science OA, 1, No. 3, FSO25 (2015), doi: https://doi.org/10.4155/fso.15.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Y. Shu, S. A. Sheardown, C. Brown, R. P. Owen, S. Zhang, R. A. Castro, A. G. Ianculescu, L. Yue, J. C. Lo, E. G. Burchard, C. M. Brett, and K. M. Giacomini, “Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action,” J. Clin. Invest., 117, 1422–1431 (2007).

    Article  CAS  Google Scholar 

  44. D. L. Smith, Jr., C. F. Elam, Jr., J. A. Mattison, M. A. Lane, G. S. Roth, D. K. Ingram, and D. B. Allison, “Metformin supplementation and life span in Fischer-344 rats,” J. Gerontol. A. Biol. Sci. Med. Sci., 65, 468–474 (2010).

    Article  Google Scholar 

  45. G. R. Steinberg, M. Dandapani, and D. G. Hardie, “AMPK: mediating the metabolic effects of salicylate-based drugs?” Trends Endocrinol. Metab., 24, No. 10, 481–487 (2013).

    Article  CAS  Google Scholar 

  46. D. Stevanovic, K. Janjetovic, M. Misirkic, L. Vucicevic, M. Sumarac-Dumanovic, D. Micic, V. Starcevic, and V. Trajkovic, “Intracerebroventricular administration of metformin inhibits ghrelin-induced hypothalamic AMP-kinase signalling and food intake,” Neuroendocrinology, 96, 24–31 (2012).

    Article  CAS  Google Scholar 

  47. N. Thangthaeng, M. Rutledge, J. M. Wong, P. H. Vann, M. J. Forster, and N. Sumien, “Metformin impairs spatial memory and visual acuity in old male mice,” Aging Dis., 8, No. 1, 17–30 (2017).

    Article  Google Scholar 

  48. R. P. Vázquez-Manrique, F. Farina, K. Cambon, M. Dolores Sequedo, A. J. Parker, J. M. Millán, A. Weiss, N. Déglon, and C. Neri, “AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington’s disease,” Hum. Mol. Genet., 25, No. 6, 1043–1058 (2016).

    Article  Google Scholar 

  49. B. Viollet and M. Foretz, “Revisiting the mechanisms of metformin action in the liver,” Ann. Endocrinol (Paris), 74, No. 2, 123–129 (2013).

    Article  CAS  Google Scholar 

  50. L. Xu and J. D. Ash, “The role of AMPK pathway in neuroprotection,” Adv. Exp. Med. Biol., 854, 425–430 (2016).

    Article  CAS  Google Scholar 

  51. W. Ye, E. H. Ramos, B. C. Wong, and D. D. Belsham, “Beneficial effects of metformin and/or salicylate on palmitate-or TNFα-induced neuroinflammatory marker and neuropeptide gene regulation in immortalized NPY/AgRP neurons,” PLoS One, 11, No. 11, e0166973 (2016).

    Article  Google Scholar 

  52. S. Yener, A. Comlekci, B. Akinci, T. Demir, F. Yuksel, M. A. Ozcan, F. Bayraktar, and S. Yesil, “Soluble CD40 ligand, plasminogen activator inhibitor-1 and thrombin-activatable fibrinolysis inhibitor-1-antigen in normotensive type 2 diabetic subjects without diabetic complications. Effects of metformin and rosiglitazone,” Med. Princ. Pract., 18, 266–271 (2009).

    Article  Google Scholar 

  53. J. Zhang, Y. Zhou, C. Chen, F. Yu, Y. Wang, J. Gu, L. Ma, and G. Ho, “ERK1/2 mediates glucose-regulated POMC gene expression in hypothalamic neurons,” J. Mol. Endocrinol., 54, No. 2, 125–135 (2015).

    Article  CAS  Google Scholar 

  54. G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, J. Ventre, T. Doebber, N. Fujii, N. Musi, M. F. Hirshman, L. J. Goodyear, and D. E. Moller, “Role of AMP-activated protein kinase in mechanism of metformin action,” J. Clin. Invest., 108, No. 8, 1167–1174 (2001).

    Article  CAS  Google Scholar 

  55. G. Zhou, J. Yu, A. Wang, S. H. Liu, J. Sinnett-Smith, J. Wu, R. Sanchez, J. Nemunaitis, C. Ricordi, E. Rozengurt, and F. C. Brunicardi, “Metformin restrains pancreatic duodenal homeobox-1 (PDX-1) function by inhibiting ERK signaling in pancreatic ductal adenocarcinoma,” Curr. Mol. Med., 16, 83–90 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 103, No. 5, pp. 504–517, May, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpakov, A.O., Derkach, K.V. Molecular Mechanisms of the Effects of Metformin on the Functional Activity of Brain Neurons . Neurosci Behav Physi 48, 969–977 (2018). https://doi.org/10.1007/s11055-018-0657-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0657-6

Keywords

Navigation