Skip to main content

Advertisement

Log in

Age-Related ECoG Dynamics of and Convulsive Activity of Wistar Rats in a Cortical Model of Focal Epilepsy

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The age-related dynamics of the ECoG and convulsive epileptiform activity induced by intracortical microinjections of 4-aminopyridine were studied in three groups of Wistar rats at ages corresponding to childhood (P20-30), adolescence (P30–45), and adulthood (P90–P120). With aging, ECoG spectral power was found to increase during waking and “sleep spindles” and to decrease during slow-wave sleep. Rats of adolescent age also showed statistically significant differences in measures of convulsive activity – mean frequency of peak-wave complexes – and the latent period of occurrence of epileptiform activity was greater than in childhood and adulthood. In addition, the total duration of epileptiform activity in rats of adolescent age was significantly lower than that in adult rats and rats at age P20–P30. The nervous system during the adolescent period may have specific protective mechanisms decreasing the intensity of convulsive activity (the ability to generate and propagate spike-wave activity), increasing resistance to epileptogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi, S. and Kumar, S. S., “Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy,” J. Neurophysiol., 112, No. 11, 2888–2900 (2014).

    Article  CAS  Google Scholar 

  • Andersen, S. L. and Teicher, M. H., “Delayed effects of early stress on hippocampal development,” Neuropsychopharmacology, 29, No. 11, 1988–1993 (2004).

    Article  Google Scholar 

  • Belov, D. R., Vol’nova, A. B., and Akhmediev, D. O., “Movement of waves of epileptiform activity in the ECoG of conscious rats in a model of local cortical epilepsy,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 66, No. 6, 751–762 (2016).

    Google Scholar 

  • Ben-Ari, Y., Woodin, M. A., Sernagor, E., Cancedda, L., Vinay, L., Rivera, C., and Cherubini, E., “Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever!” Front. Cell. Neurosci., 6, 35 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G. and Draguhn, A., “Neuronal oscillations in cortical networks,” Science, 304, No. 5679, 1926 (2004).

    Article  Google Scholar 

  • Campbell, I. G. and Feinberg, I., “Maturational patterns of sigma frequency power across childhood and adolescence: A longitudinal study 39, No. 1, 193–201 (2016).

  • Casey, B. T., Getz, S., and Galvan, A., “The adolescent brain,” Dev. Rev., 28, No. 1, 62–77 (2008).

    Article  CAS  Google Scholar 

  • Chen, K., Aradi, L., Thon, N., Eghbal-Ahmadi, M., Baram, T. Z., and Oltesz, I., “Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability,” Nat. Med., 7, No. 3, 331–337 (2001).

    Article  CAS  Google Scholar 

  • Coenen, A. M. and Van Luijtelaar, E. L., “Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats,” Behav. Genet., 33, No. 6, 635–55 (2003).

  • Crews, F., He, J., and Hodge, C., “Adolescent cortical development: a critical period of vulnerability for addiction,” Pharmacol. Biochem. Behav., 86, No. 2, 189–199 (2007).

    Article  CAS  Google Scholar 

  • Cunningham, M. G., Bhattacharyya, S., and Benes, E. M., “Amygdalocortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence,” J. Comp. Neurol., 453, No. 2, 116–130 (2002).

    Article  Google Scholar 

  • Dubé, C., Richichi, C., Bender, R. A., Chung, G., Litt, B., and Baram, T. Z., “Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis,” Brain, 129, No. 4, 911–922 (2006).

    Article  Google Scholar 

  • Galanopoulou, A. S., “Dissociated gender-specific effects of recurrent seizures on GABA signaling in CA1 pyramidal neurons: Role of GABA-A Receptors,” J. Neurosci., 28, No. 7, 1557–1567 (2008).

    Article  CAS  Google Scholar 

  • Holmes, G. L. and Ben-Ari, Y., “The neurobiology and consequences of epilepsy in the developing brain,” Pediatr. Res., 49, No. 3, 320–325 (2001).

    Article  CAS  Google Scholar 

  • Jensen, F. E., Wang, C., Stafstrom, C. E., Liu, Z., Geary, C., and Stevens, M. C., “Acute and chronic increases in excitability in rat hippocampal slices after perinatal hypoxia in vivo,” J. Neurophysiol., 79, No. 1, 73–81 (1998).

    Article  CAS  Google Scholar 

  • Kalinina, D. S., Vol’nova, A. B., Alekseeva, O. S., and Zhuravin, I. A., “Electrical activity of the neocortex in adult rats after prenatal hypoxia and on modeling of epilepsy,” Zh. Evolyuts. Biokhim. Fiziol., 52, No. 5, 321–327 (2016).

    Google Scholar 

  • Kandratavicius, L., Balista, P. A., Lopes-Aguiar, C., Ruggiero, R. N., Umeoka, E. H., Garcia-Cairasco, N., and Leite, J. P., “Animal models of epilepsy: use and limitations,” Neuropsychiatr. Dis. Treat., 10, 1693–1705 (2014).

    Article  Google Scholar 

  • Karlov, V. A., Epilepsy in Children and Adult Women and Men, Meditsina. Moscow (2010).

  • Klioueva, L. A., van Luijtelaar, J. M., Chepurnova, N. E., and Chepurnov, S. A., “PTZ-induced seizures in rats: effects of age and strain,” Physiol. Behav., 72, No. 3, 421–426 (2001).

    Article  CAS  Google Scholar 

  • Kodirov, S. A., Zhuravlev, V. L., Safonova, T. A., Kurilova, L. S., and Krutetskaya, Z. I., “The voltage-gated K+ channels superfamily: structure, functions, pathology,” Tsitologiya, 52, No. 9, 697–714 (2010).

    CAS  Google Scholar 

  • Kovács, A., Mihály, A., Komáromi, Á., et al., “Seizure, neurotransmitter release, and gene expression are closely related in the striatum of 4-aminopyridine-treated rats,” Epilepsy Res., 55, No. 1–2, 117–129 (2003).

    Article  Google Scholar 

  • Le Van Quyen, M., Khalilov, L., and Ben-Ari, Y., “The dark side of high-frequency oscillations in the developing brain,” Trends Neurosci., 29, No. 7, 419–427 (2006).

    Article  CAS  Google Scholar 

  • Mares, P., “Models of epileptic seizures in immature rats,” Physiol. Res., 61, No. 1, 103–108 (2012).

    Google Scholar 

  • Marescaux, C., Vergnes, M., and Depaulis, A., “Genetic absence epilepsy in rats from Strasbourg - a review,” J. Neural Transm., Supplement, 35, 37–69 (1992).

    CAS  Google Scholar 

  • Mengler, L., Khmelinskii, A., Diedenhofen, M., Po, C., Staring, M., Lelieveldt, B. P., and Hoehn, M., “Brain maturation of the adolescent rat cortex and striatum: changes in volume and myelination,” Neuroimage, 84, 35–44 (2014).

    Article  Google Scholar 

  • Minelli, A., Edwards, R. H., Manzoni, T., and Conti, F., “Postnatal development of the glutamate vesicular transporter VGLUT1 in rat cerebral cortex,” Dev. Brain Res., 140, No. 2, 309–314 (2003).

    Article  CAS  Google Scholar 

  • Moshe, S. L., Garant, D. S., Sperber, E. F., Veliskova, J., Kubova, H., and Brown, L. L., “Ontogeny and topography of seizure regulation by the substantia nigra,” Brain Dev., 17, 61–72 (1995).

    Article  Google Scholar 

  • Olini, N., Kurth, S., and Huber, R., “The effects of caffeine on sleep and maturational markers in the rat,” PLoS One, 8, No. 9, e72539 (2013).

    Article  CAS  Google Scholar 

  • Paxinos, G. and Watson, C, The Rat Brain in Stereotaxic Coordinates, Academic Press, Oxford (2013).

    Google Scholar 

  • Peña, F. and Tapia, R., “Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels,” Neuroscience, 101, No. 3, 547–561 (2000).

    Article  Google Scholar 

  • Perrault, P. and Avoli, M., “Physiology and pharmacology of epileptiform activity induced by 4-aminopyridine in rat hippocampal slices,” J. Neurophysiol., 65, 771–785 (1991).

    Article  Google Scholar 

  • Petrukhin, A. S., Epilepsy: Population Mortality and Risk Factors for Its Development, Meditsina, Moscow (2000).

    Google Scholar 

  • Schlief, T., Schonherr, R., and Heinemann, S. H., “Modification of C-type inactivating Shaker potassium channels by chloramine-T,” Pflügers Arch., 431, 483–4930 (1996).

    Article  CAS  Google Scholar 

  • Shinnar, S. and Pellock, J. M., “Update on the epidemiology and prognosis of pediatric epilepsy,” J. Child Neurol., 17, No. 1, 4–17 (2002).

    Article  Google Scholar 

  • Shnaider, N. A., Shapovalova, E. A., Sharavii, L. K., Sadykova, A. V., and Dmitrenko, D. V. “Childhood epilepsy: epidemiology and clinical features,” Vestn. Klin. Bol’n. No. 51, 3, No. 10, 32–37 (2010).

  • Spyker, D. A., Lynch, C., Shabanowitz, J., and Sinn, J. A., “Poisoning with 4-aminopyridine: Report of three cases,” Clin. Toxicol., 16, 487–497 (1980).

    Article  CAS  Google Scholar 

  • Sysoeva, M. V., Sitnikova, E. Yu., and Sysoev, I. V., “Thalamocortical mechanisms of the initiation, maintenance, and termination of peakwave discharges in WAG/Rij rats,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 66, No. 1, 103–112 (2016).

    CAS  Google Scholar 

  • Szente, M., Gajda Z, Said Ali, K., and Hermesz, E., “Involvement of electrical coupling in the in vivo ictal epileptiform activity induced by 4-aminopyridine in the neocortex,” Neuroscience, 115, No. 4, 1067–1078 (2002).

    Article  CAS  Google Scholar 

  • Teicher, M. H., Andersen, S. L., and Hostetter, J. C., Jr., “Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens,” Brain Res. Dev. Brain Res., 89, No. 2, 167–172 (1995).

    Article  CAS  Google Scholar 

  • Tsytsarev, V., Maslov, K. I., Yao, J., Parameswar, A. R., Demchenko, A. V., and Wang, L. V., “In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog,” J. Neurosci. Meth., 203, No. 1, 136–140 (2012).

    Article  CAS  Google Scholar 

  • Uhlhaas, P. J., Roux, F., Singer, W., Haenschel, C., Sireteanu, R., and Rodriguez, E., “The development of neural synchrony reflects late maturation and restructuring of functional networks in humans,” Proc. Natl. Acad. Sci. USA, 106, No. 24, 9866–9871 (2009).

    Article  CAS  Google Scholar 

  • Vertes, R. P. and Kocsis, B., “Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus,” Neuroscience, 81, No. 4, 893–926 (1997).

    Article  CAS  Google Scholar 

  • Vol’nova, A. V. and Lenkov, D. N. “Absence epilepsy: mechanisms of hypersynchronization of neuronal ensembles,” Med. Akad. Zh., 12, No. 1, 7–19 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kalinina.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 67, No. 3, pp. 322–333, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, D.S., Lenkov, D.N., Zhuravin, I.A. et al. Age-Related ECoG Dynamics of and Convulsive Activity of Wistar Rats in a Cortical Model of Focal Epilepsy. Neurosci Behav Physi 48, 1006–1013 (2018). https://doi.org/10.1007/s11055-018-0662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0662-9

Keywords

Navigation