Skip to main content
Log in

Use of Optogenetic Methods to Study and Suppress Epileptic Activity (review)

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

About one per cent of the world’s population suffers from epilepsy, and approximately 30% of cases fail to respond to medication. Novel approaches to treatment are required to help patients with drug-resistant epilepsy. One potential method consists of low-frequency stimulation of brain structures. However, at this time the mechanism of the anticonvulsant action of low-frequency stimulation is not completely understood. There are significant drawbacks to this method: it is invasive in nature and has nonspecific actions on brain tissues, which leads to various side effects. The development of optogenetics has provided a new impulse to studies of the mechanisms of action of low-frequency stimulation on epileptic activity. In addition, there is hope for significant reductions in the side effects of stimulation, as there is potential for selective activation or, conversely, inhibition of particular neuron populations. This review describes current progress in studies of the mechanisms of the generation and suppression of epileptic activity using an optogenetic method in in vitro and in vivo models of epilepsy. The potentials of this approach for clinical use are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. G. Govorunova, O. A. Sineshchekov, and J. L. Spudich, “Three families of channelrhodopsins and their use in optogenetics,” Zh. Vyssh. Nerv. Deyat., 67, No. 5, 9–17 (2017).

    Google Scholar 

  2. E. P. Kuleshova, “Optogenetics – new potentials for electrophysiology,” Zh. Vyssh. Nerv. Deyat., 67, No. 5, 18–31 (2017).

    Google Scholar 

  3. R. D. Airan, K. R. Thompson, L. E. Fenno, et al., “Temporally precise in vivo control of intracellular signalling,” Nature, 458, No. 7241, 1025–1029 (2009).

    Article  CAS  Google Scholar 

  4. H. Alfonsa, J. H. Lakey, R. N. Lightowlers, and A. J. Trevelyan, “Clout is a novel cooperative optogenetic tool for extruding chloride from neurons,” Nat. Commun., 7, 13495 (2016).

    Article  Google Scholar 

  5. M. Barbarosie and M. Avoli, “CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures,” J. Neurosci., 17, No. 23, 9308–9314 (1997).

    Article  CAS  Google Scholar 

  6. S. B. Bonelli, P. J. Thompson, M. Yogarajah, et al., “Memory reorganization following anterior temporal lobe resection: a longitudinal functional MRI study,” Brain, 136, No. 6, 1889–1900 (2013).

    Article  Google Scholar 

  7. E. S. Boyden, F. Zhang, E. Bamberg, et al., “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci., 8, No. 9, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  8. S. Chen, A. Z. Weitemier, X. Zeng, et al., “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science, 359, No. 6376, 679–684 (2018).

    Article  CAS  Google Scholar 

  9. B. Y. Chow, X. Han, A. S. Dobry, et al., “High-performance genetically targetable optical neural silencing by light-driven proton pumps,” Nature, 463, No. 7277, 98–102 (2010).

    Article  CAS  Google Scholar 

  10. S. G. Coleshill, C. D. Binnie, R. G. Morris, et al., “Material-specific recognition memory deficits elicited by unilateral hippocampal electrical stimulation,” J. Neurosci., 24, No. 7, 1612–1616 (2004).

    Article  CAS  Google Scholar 

  11. T. J. Ellender, J. V. Raimondo, A. Irkle, et al., “Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous afterdischarges,” J. Neurosci., 34, No. 46, 15208–15222 (2014).

    Article  Google Scholar 

  12. R. Esteller, J. Echauz, T. Tcheng, et al., “Line length: an efficient feature for seizure onset detection,” in: Proc. 23rd Ann. Int. IEEE Conf. Engineering in Medicine and Biology Society (2001), pp. 1707–1710.

  13. G. Fink and M. G. Jamieson, “Effect of electrical stimulation of the preoptic area on luteinizing hormone releasing factor in pituitary stalk blood,” J. Physiol., 237, No. 2, 37P–38P (1974).

    CAS  PubMed  Google Scholar 

  14. R. S. Fisher and A. L. Velasco, “Electrical brain stimulation for epilepsy,” Nat. Dev. Neurol., 10, No. 5, 261–270 (2014).

    Article  Google Scholar 

  15. M. Gschwind and M. Seeck, “Transcranial direct-current stimulation as treatment in epilepsy,” Exp. Rev. Neurother., 16, No. 12, 1427–1441 (2016).

    Article  CAS  Google Scholar 

  16. T. P. Ladas, C. C. Chiang, L. E. Gonzalez-Reyes,et al., “Seizure reduction through interneuron-mediated entrainment using low frequency optical stimulation,” Exp. Neurol., 269, 120–132 (2015).

    Article  Google Scholar 

  17. L. Lanteaume, S. Khalfa, J. Regis, et al., “Emotion induction after direct intracerebral stimulations of human amygdala,” Cereb. Cortex, 17, No. 6, 1307–1313 (2007).

    Article  Google Scholar 

  18. M. Ledri, M. G. Madsen, L. Nikitidou, et al., “Global optogenetic activation of inhibitory interneurons during epileptiform activity,” J. Neurosci., 34, No. 9, 3364–3377 (2014).

    Article  CAS  Google Scholar 

  19. X. Liu, S. Ramirez, P. T. Pang, C. B. Puryear, et al., “Optogenetic stimulation of a hippocampal engram activates fear memory recall,” Nature, 484, No. 7394, 381–385 (2012).

    Article  CAS  Google Scholar 

  20. M. Mahn, M. Prigge, S. Ron, et al., “Biophysical constraints of optogenetic inhibition at presynaptic terminals,” Nat. Neurosci., 19, No. 4, 554–556 (2016).

    Article  CAS  Google Scholar 

  21. A. Y. Malyshev, M. V. Roshchin, G. R. Smirnova, et al., “Chloride conducting light activated channel GtACR2 can produce both cessation of fi ring and generation of action potentials in cortical neurons in response to light,” Neurosci. Lett., 640, 76–80 (2017).

    Article  CAS  Google Scholar 

  22. D. A. McCormick and D. Contreras, “On the cellular and network bases of epileptic seizures,” Annu. Rev. Physiol., 63, 815–846 (2001).

    Article  CAS  Google Scholar 

  23. J. T. Paz, T. J. Davidson, E. S. Frechette, et al., “Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury,” Nat. Neurosci., 16, No. 1, 64–70 (2013).

    Article  CAS  Google Scholar 

  24. J. V. Raimondo, L. Kay, T. J. Ellender, and C. J. Akerman, “Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission,” Nat. Neurosci., 15, No. 8, 1102–1104 (2012).

    Article  CAS  Google Scholar 

  25. L. Shen, C. Chen, H. Zheng, and L. Jin, “The evolutionary relationship between microbial rhodopsins and metazoan rhodopsins,” Scient. World J. (2013).

  26. Z. Shiri, M. Lévesque, G. Etter, et al., “Optogenetic Low-frequency stimulation of specific neuronal populations abates ictogenesis,” J. Neurosci., 37, No. 11, 2999–3008 (2017).

    Article  CAS  Google Scholar 

  27. W. R. Stauffer, A. Lak, A. Yang, et al., “Dopamine neuron-specific optogenetic stimulation in rhesus macaques,” Cell, 166, No. 6, 1564–1571 (2016).

    Article  Google Scholar 

  28. J. Tønnesen, A. T. Sørensen, K. Deisseroth, et al., “Optogenetic control of epileptiform activity,” Proc. Natl. Acad. Sci. USA, 106, No. 29, 12162–12167 (2009).

    Article  Google Scholar 

  29. J. Tønnesen and M. Kokaia, “Epilepsy and optogenetics: can seizures be controlled by light?” Clin. Sci. (Lond.), 131, No. 14, 1605–1616 (2017).

    Article  Google Scholar 

  30. B. M. Uthman, “Vagus nerve stimulation for seizures,” Arch. Med. Res., 31, No. 3, 300–303 (2000).

    Article  CAS  Google Scholar 

  31. F. Wendling, U. Gerber, D. Cosandier-Rimele, et al., “Brain (hyper) excitability revealed by optimal electrical stimulation of GABAergic interneurons,” Brain Stimul., 9, No. 6, 919–932 (2016).

    Article  CAS  Google Scholar 

  32. J. Wietek, J. S. Wiegert, N. Adeishvili, et al., “Conversion of channelrhodopsin into a light-gated chloride channel,” Science, 344, No. 6182, 409–412 (2014).

    Article  CAS  Google Scholar 

  33. Z. Xu, Y. Wang, B. Chen, et al., “Entorhinal principal neurons mediate brain-stimulation treatments for epilepsy,” EBioMedicine, 14, 148–160 (2016).

    Article  Google Scholar 

  34. L. Yekhlef, G. L. Breschi, L. Lagostena, et al., “Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizure-like activity in mouse medial entorhinal cortex,” J. Neurophysiol., 113, No. 5, 1616–1630 (2014).

    Article  Google Scholar 

  35. L. Yekhlef, G. L. Breschi, and S. Taverna, “Optogenetic activation of VGLUT2-expressing excitatory neurons blocks epileptic seizure-like activity in the mouse entorhinal cortex,” Sci. Rep., 7, 43230 (2017).

    Article  CAS  Google Scholar 

  36. H. Zeng and L. Madisen, “Mouse transgenic approaches in optogenetics,” Prog. Brain Res., 196, 193–213 (2012).

    Article  CAS  Google Scholar 

  37. F. Zhang, L. P. Wang, M. Brauner, et al., “Multimodal fast optical interrogation of neural circuitry,” Nature, 446, No. 7136, 633–639 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Smirnova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 104, No. 6, pp. 620–629, June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, E.Y., Zaitsev, A.V. Use of Optogenetic Methods to Study and Suppress Epileptic Activity (review). Neurosci Behav Physi 49, 1083–1088 (2019). https://doi.org/10.1007/s11055-019-00842-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00842-9

Keywords

Navigation