Skip to main content
Log in

Effects of Active Fragments AgRP 83-132 and 25-51 on Dopamine Biosynthesis in the Brain

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Experiments using C57BL/6J mice 3 h after administration of agouti gene-related peptide (AgRP) fragments 83-132 and 25-51 into the midbrain identified dose-dependent inhibitory effects on dopaminergic neurons. Staining of midbrain sections using an immunohistochemical method with specific antibodies showed that fragment AgRP 83-132 induced significant decreases in tyrosine hydroxylase phosphorylated at serine-40 and serine-31 in neurons. Administration of AgRP fragment 25-51 produced a significant decrease only in tyrosine hydroxylase phosphorylated at serine-31. Studies using high-performance liquid chromatography demonstrated significant decreases in dopamine levels in the striatum after administration of both fragments. This article discusses the mechanisms inducing changes in tyrosine hydroxylase activity in midbrain structures and the actions of AgRP 25-51 via G-protein-independent pathways and particularly the role of the ERK1/2 module of the MAPK kinase cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. L. Fields, G. O. Hjelmstad, E. B. Margolis, and S. M. Nicola, “Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement,” Annu. Rev. Neurosci., 30, 289–316 (2007).

    Article  CAS  Google Scholar 

  2. G. A. Oganesyan, I. V. Romanova, E. A. Aristakesyan, et al., “The dopaminergic system of the telencephalo-diencephalic areas of the vertebrate brain in the organization of the sleep–waking cycle,” Neurosci. Behav. Physiol., 39, No. 8, 805–817 (2008).

    Article  Google Scholar 

  3. C. R. Gerfen, “Basal ganglia,” in: The Rat Nervous System, Elsevier, USA (2004), 3rd ed., pp. 455–508.

  4. M. V. Ugryumov, “Traditional views of neurodegenerative diseases,” in: Neurodegenerative Diseases: Basic and Applied Aspects, Nauka, Moscow (2010), pp. 8–35.

  5. S. C. Daubner, T. Le, and S. Wang, “Tyrosine hydroxylase and regulation of dopamine synthesis,” Arch. Biochem. Biophys., 508, No. 1, 1–12 (2011).

    Article  CAS  Google Scholar 

  6. M. M. Ollmann, B. D. Wilson, Y. K. Yang, et al., “Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein,” Science, 278, 135–138 (1997).

    Article  CAS  Google Scholar 

  7. D. Bagnol, X. Y. Lu, C. B. Kaelin, et al., “Anatomy of an endogenous antagonist: relationship between agouti-related protein and proopiomelanocortin in brain,” J. Neurosci., 19, 1–7 (1999).

    Article  Google Scholar 

  8. J. W. Creemers, L. E. Pritchard, A. Gyte, et al., “Agouti-related protein is posttranslationally cleaved by proprotein convertase 1 to generate agouti-related protein (AGRP) 83-132: interaction between AGRP83-132 and melanocortin receptors cannot be influenced by syndecan-3,” Endocrinology, 147, No. 4, 1621–1631 (2006).

    Article  CAS  Google Scholar 

  9. M. W. Schwartz and G. J. Morton, “Obesity: keeping hunger at bay,” Nature, 418, 595–597 (2002).

    Article  CAS  Google Scholar 

  10. Y. K. Yang, M. Ollmann, B. Wilson, et al., “Effects of recombinant agouti-signaling protein on melanocortin action,” Mol. Endocrinol., 11, 274–280 (1997).

    Article  CAS  Google Scholar 

  11. R. D. Cone, “Anatomy and regulation of the central melanocortin system,” Nat. Neurosci., 8, No. 5, 571–578 (2005).

    Article  CAS  Google Scholar 

  12. M. Lee and S. L. Wardlaw, “The central melanocortin system and the regulation of energy balance,” Front. Biosci., 12, 3994–4010 (2007).

    Article  CAS  Google Scholar 

  13. D. J. Marsh, G. I. Miura, K. A. Yagaloff, et al., “Effects of neuropeptide Y deficiency on hypothalamic agouti-related protein expression and responsiveness to melanocortin analogues,” Brain Res., 848, No. 1, 66–77 (1999).

    Article  CAS  Google Scholar 

  14. V. Tolle and M. J. Low, “In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin- deficient mice,” Diabetes, 57, No. 1, 86–94 (2008).

    Article  CAS  Google Scholar 

  15. K. Goto, A. Inui, Y. Takimoto, et al., “Acute intracerebroventricular administration of carboxyl-terminal fragments of agouti-related pep-tide produces a long-term decrease in energy expenditure in rats,” Int. J. Mol. Med., 12, 379–383 (2003).

    CAS  PubMed  Google Scholar 

  16. L. E. Pritchard and A. White, “Agouti-related protein: more than a melanocortin-4 receptor antagonist?” Peptides, 26, No. 10, 1759–1770 (2005).

    Google Scholar 

  17. A. L. Mikhrina and I. V. Romanova, “The role of AGRP in regulating dopaminergic neurons in the brain,” Neurosci. Behav. Physiol., 45, No. 5, 536–541 (2015).

    Article  CAS  Google Scholar 

  18. R. N. Lippert, K. L. J. Ellacott, and R. D. Cone, “Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice,” Endocrinology, 155, No. 5, 1718–1727 (2014).

    Article  Google Scholar 

  19. G. Paxinos and K. B. J. Franklin, The Mouse Brain in Stereotaxic Coordinates, Academic Press (2001), ISBN 0-12-547636-1, CDROM, www.academicpress.com.

  20. K. L. Lambertsen, J. B. Gramsbergen, M. Sivasaravanaparan, et al., “Genetic KCa3.1-Deficiency produces locomotor hyperactivity and alterations in cerebral monoamine levels,” PLoS One, 7, No. 10,1–15 (2012).

    Article  Google Scholar 

  21. I. N. Krasnova, E. R. Bychkov, V. I. Lioudyno, et al., “Intracerebroventricular administration of substance P increases dopamine content in the brain of 6-hydroxydopamine lesioned rats,” Neuroscience, 95, No. 1, 113–117 (2000).

    Article  CAS  Google Scholar 

  22. A. L. Mikhrina, M. V. Chernyshev, E. V. Mikhailova, et al., “Involvement of agouti-like peptide in the control of movement activity,” Ros. Fiziol. Zh., 104, No. 7, 769–779 (2018).

    Google Scholar 

  23. A. C. Rapraeger, “Syndecan-regulated receptor signaling,” J. Cell Biol., 149, No. 5, 995–998 (2000).

    Article  CAS  Google Scholar 

  24. J. W. Haycock, N. G. Ahn, M. H. Cobb, and E. G. Krebs, “ERK1 and ERK2, two microtubule-associated protein kinases, mediate the phosphorylation of tyrosine hydroxylase at serine 31 in situ,” Proc. Natl. Acad. Sci. USA, 89, 2365–2369 (1992).

    Article  CAS  Google Scholar 

  25. E. Savontaus, I. M. Conwell, and S. L. Wardlaw, “Effects of adrenalectomy on AGRP, POMC, NPY and CART gene expression in the basal hypothalamus of fed and fasted rats,” Brain Res., 958, No. 1, 130–138 (2002).

    Article  CAS  Google Scholar 

  26. I. V. Romanova, K. V. Derkach, A. L. Mikhrina, et al., “The leptin, dopamine and serotonin receptors in hypothalamic POMC-neurons of normal and obese rodents,” Neurochem. Res., 43, No. 4, 821–837 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Mikhrina.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 104, No. 12, pp. 1456–1466, December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhrina, A.L., Saveleva, L.O., Alekseeva, O.S. et al. Effects of Active Fragments AgRP 83-132 and 25-51 on Dopamine Biosynthesis in the Brain. Neurosci Behav Physi 50, 367–373 (2020). https://doi.org/10.1007/s11055-020-00908-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00908-z

Keywords

Navigation