Skip to main content

Advertisement

Log in

Blockade Of γ-Aminobutyric Acid Transporters In Brain Synapses Protects Against Hyperbaric Oxygen-Induced Convulsions

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Respiration of hyperbaric oxygen (HBO2) suppresses the synthesis of γ-aminobutyric acid (GABA) in the brain, leading to weakening of inhibitory GABAergic neurotransmission and the development of convulsive syndrome of the epileptic seizure type. We report here our testing of the hypothesis that inhibition of GABA transporters might compensate for insuffi ciency of inhibitory transmitter synthesis, strengthen GABAergic transmission, and weaken or prevent the development of oxygen-induced convulsions. The development of convulsions was studied in conscious rats in a barochamber containing oxygen at a pressure of 5 atm (absolute atmospheres) after prior intracerebroventricular administration of drugs inhibiting selective neuronal (NO-711) or nonselective neuronal/glial GABA transporters (nipecotic acid). Studies in a separate group of rats measured GABA in the striatum by microdialysis with liquid chromatography. These experiments showed that inhibition of neuronal and glial GABA transporters increases the level of GABA in the brain and weakens the development of oxygen-induced convulsions. A more effective anticonvulsant effect was seen after intracerebroventricular administration of the nonselective inhibitor of GABA transporters. These data provide evidence that blockade of the functions of neuronal and glial GABA transporters increases the GABA level in the brain and weakens the development of convulsive syndrome in HBO2. The anticonvulsant effects of the inhibitors used here appear to result from strengthening of GABA-mediated synaptic and extrasynaptic neurotransmission by hyperbaric hyperoxia. Inhibition of GABA transporters may constitute a potential direction for the development of effective methods of preventing oxygen-induced convulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Zal’tsman, “Stages of formation of oxygen-induced epilepsy and the functional state of the nervous system,” in: Hyperbaric Epilepsy and Narcosis, G. L. Zal’tsman (ed.), Nauka, Leningrad (1968), pp. 129–136.

    Google Scholar 

  2. J. D. Balentine, Pathology of Oxygen Toxicity, Academic Press, New York (1982).

    Google Scholar 

  3. V. I. Arsen’eva and A. I. Selivra, “Bioelectric activity of the peripheral part of sympathetic nervous system during oxygen-induced epilepsy,” in: Hyperbaric Epilepsy and Narcosis, G. L. Zal’tsman (ed.), Nauka, Leningrad (1968), pp. 70–78.

    Google Scholar 

  4. A. I. Selivra, Hyperbaric Oxygenation. Physiological Mechanisms of the Central Nervous System Responses to Hyperoxia, Nauka, Leningrad (1983).

    Google Scholar 

  5. J. B. Dean, D. K. Mulkey, R. A. Henderson, et al., “Hyperoxia, reactive oxygen species, and hyperventilation: Oxygen sensitivity of brain stem neurons,” J. Appl. Physiol., 96, 784–791 (2004).

    Article  Google Scholar 

  6. J. B. Dean, D. K. Mulkey, A. J. Garcia, et al., “Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures,” J. Appl. Physiol., 95, 883–909 (2003).

    Article  CAS  Google Scholar 

  7. I. T. Demchenko and C. A. Piantadosi, “Nitric oxide amplifi es the excitatory to inhibitory neurotransmitter imbalance accelerating oxygen seizures,” Undersea Hyperb. Med., 33, No. 3, 169–174 (2006).

    CAS  PubMed  Google Scholar 

  8. G. V. Shcherbakova, “Glutamate decarboxylase activity and γ-aminobutyric acid content in rat brain at different functional states caused by high oxygen pressure,” Dokl. Akad. Nauk. SSSR, 146, No. 5, 1213–1215 (1962).

    CAS  Google Scholar 

  9. J. D. Wood and W. J. Watson, “Protective action of gamma-aminobutyric acid against oxygen toxicity,” Nature, 195, 296 (1962).

    Article  CAS  Google Scholar 

  10. A. A. Krichevskaya, V. S. Shugalei, L. A. Shcherbina, and G. G. Ermolenko, “γ-Aminobutyric acid contents and glutamate decarboxylase activity in the brains of rats in hyperbaric oxygen and the protective action of urea,” Vopr. Med. Khim., 20, No. 3, 294–298 (1974).

    CAS  Google Scholar 

  11. A. K. Singh, and E. W. Banister, “Effect of 6-hydroxydopamine on brain and blood catecholamine, ammonia, and amino acid metabolism in rats subjected to high pressure oxygen induced convulsions,” Can. J. Physiol. Pharmacol., 56, No. 2, 334–336 (1978).

    Article  CAS  Google Scholar 

  12. P. Mialon, R. Gibey, J. C. Bigot, and L. Barthelemy, “Changes in striatal and cortical amino acid and ammonia levels of rat brain after one hyperbaric oxygen-induced seizures,” Aviat. Space Environ. Med., 63, No. 4, 287–291 (1992).

    CAS  PubMed  Google Scholar 

  13. I. T. Demchenko, A. E. Boso, A. R. Whorton, and C. A. Piantadosi, “Nitric oxide production is enhanced in rat brain before oxygen-induced convulsions,” Brain Res., 917, No. 2, 253–261 (2001).

    Article  CAS  Google Scholar 

  14. S. Zhang, Y. Takeda, S. Hagioka, et al., “Measurement of GABA and glutamate in vivo levels with high sensitivity and frequency,” Brain Res. Protoc., 14, No. 2, 61–66 (2005).

    Article  Google Scholar 

  15. H. G. Gasier, I. T. Demchenko, L. G. Tatro, and C. A. Piantadosi, “S-nitrosylation of GAD65 is implicated in decreased GAD activity and oxygen-induced seizures,” Neurosci. Lett., 653, 283–287 (2017).

    Article  CAS  Google Scholar 

  16. D. P. D’Agostino, R. W. Putnam, and J. B. Dean, “Superoxide (O2) production in CA1 neurons of rat hippocampal slices exposed to graded levels of oxygen,” J. Neurophysiol., 98, 1030–1041 (2007).

    Article  Google Scholar 

  17. S. R. Thom, V. Bhopale, D. Fisher, et al., “Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressures of oxygen: An oxidative stress response,” J. Neurobiol., 51, 85–100 (2002).

    Article  CAS  Google Scholar 

  18. N. Gould, P. T. Doulias, M. Tenopoulou, et al., “Regulation of protein function and signaling by reversible cysteine S-nitrosylation,” J. Biol. Chem., 288, No. 37, 26473–26479 (2013).

    Article  CAS  Google Scholar 

  19. D. N. Atochin, I. T. Demchenko, J. Astern, et al., “Contributions of endothelial and neuronal nitric oxide synthases to cerebrovascular responses to hyperoxia,” J. Cereb. Blood Flow Metab., 23, 1219–1226 (2003).

    Article  CAS  Google Scholar 

  20. G. B. Richerson and Y. Wu, “Dynamic equilibrium of neurotransmitter transporter. Not just for reuptake anymore,” J. Neurophysiol., 90, 1363–1374 (2003).

    Article  CAS  Google Scholar 

  21. A. V. Sem’yanov, Diffuse extrasynaptic neurotransmission by glutamate and GABA,” Zh. Vyssh. Nerv. Deyat., 54, No. 1, 66–82 (2003).

    Google Scholar 

  22. M. van der Zeyden, W. H. Oldenziel, K. Rea, et al., “Microdialysis of GABA and glutamate: Analysis, interpretation and comparison with microsensors,” Pharmacol. Biochem. Behav., 90, 135–147 (2008).

    Article  Google Scholar 

  23. A. Del Arco, G. Segovia, R. Fuxe, and F. Mora, “Changes in dialysate concentrations of glutamate and GABA in the brain: An index of volume transmission mediated actions?” J. Neurochem., 85, 23–33 (2003).

    Article  Google Scholar 

  24. T. Tzuk-Shina, N. Bitterman, and D. Harel, “The effect of vigabatrin on central nervous system oxygen toxicity in rats,” Eur. J. Pharmacol., 202, No. 2, 171–175 (1991).

    Article  CAS  Google Scholar 

  25. A. A. Hall, C. Young, M. Bodo, and R. T. Mahon, “Vigabatrin prevents seizure in swine subjected to hyperbaric hyperoxia,” J. Appl. Physiol., 115, No. 6, 861–867 (2013).

    Article  CAS  Google Scholar 

  26. I. T. Demchenko, S. Y. Zhilyaev, A. N. Moskvin, et al., “Antiepileptic drugs prevent seizures in hyperbaric oxygen: A novel model of epileptiform activity,” Brain Res., 1657, 347–354 (2017).

    Article  CAS  Google Scholar 

  27. F. Kersante, S. Rowley, I. Pavlov, et al., “A functional role for both γ-aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus,” J. Physiol., 591, No. 10, 2429–2441 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Moskvin.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 105, No. 4, pp. 510–519, April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskvin, A.N., Platonova, T.P., Zhilyaev, S.Y. et al. Blockade Of γ-Aminobutyric Acid Transporters In Brain Synapses Protects Against Hyperbaric Oxygen-Induced Convulsions. Neurosci Behav Physi 50, 505–510 (2020). https://doi.org/10.1007/s11055-020-00930-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00930-1

Keywords

Navigation