Skip to main content

Advertisement

Log in

Tumorigenesis and prognostic role of hepatoma-derived growth factor in human gliomas

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Hepatoma-derived growth factor (HDGF) is a neurotrophic factor found in mouse spinal cord and hippocampal neurons. In various malignant tumors, the role of HDGF in tumor progression and its use as a diagnostic biomarker or therapeutic target have been extensively explored. However, the prognostic function and mitogenic role of HDGF in gliomagenesis are yet to be verified. In this study, we found a significant incidence of HDGF prevalence between the different pathological types and stages of glioma in 105 patients. We also found a prognostic significance in 41 glioblastoma multiforme (GBM) patients, with prevalence of nuclear HDGF predicting short survival of patients with GBM after surgery. To delineate the mitogenic role of HDGF in gliomagenesis, an adenoviral-expressed HDGF small interfering RNA (Ad-HDGF siRNA) was used to knock down expression of nuclear HDGF. After knocking down nuclear HDGF expression in human GBM cells, cell growth and cell invasion and induction on apoptosis by caspase-3 activation were significantly inhibited. We conclude that HDGF is a mitogenic growth factor in glioma progression and can be a useful prognostic marker for GBM and therapeutic target for clinical management of glioma in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reddy SP et al (2008) Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res 14(10):2978–2987

    Article  PubMed  CAS  Google Scholar 

  2. Gladson CL, Prayson RA, Liu WM (2010) The pathobiology of glioma tumors. Annu Rev Pathol 5:33–50

    Article  PubMed  CAS  Google Scholar 

  3. Lamszus K et al (1998) Scatter factor promotes motility of human glioma and neuromicrovascular endothelial cells. Int J Cancer 75(1):19–28

    Article  PubMed  CAS  Google Scholar 

  4. Kim HD et al (2008) Epidermal growth factor-induced enhancement of glioblastoma cell migration in 3D arises from an intrinsic increase in speed but an extrinsic matrix- and proteolysis-dependent increase in persistence. Mol Biol Cell 19(10):4249–4259

    Article  PubMed  CAS  Google Scholar 

  5. Lund-Johansen M et al (1990) Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. Cancer Res 50(18):6039–6044

    PubMed  CAS  Google Scholar 

  6. Ding Q et al (2003) The pattern of enhancement of Src kinase activity on platelet-derived growth factor stimulation of glioblastoma cells is affected by the integrin engaged. J Biol Chem 278(41):39882–39891

    Article  PubMed  CAS  Google Scholar 

  7. Assanah M et al (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26(25):6781–6790

    Article  PubMed  CAS  Google Scholar 

  8. Arwert E et al (2007) Visualizing the dynamics of EGFR activity and antiglioma therapies in vivo. Cancer Res 67(15):7335–7342

    Article  PubMed  CAS  Google Scholar 

  9. Lee TH et al (2006) Integrin regulation by vascular endothelial growth factor in human brain microvascular endothelial cells: role of alpha6beta1 integrin in angiogenesis. J Biol Chem 281(52):40450–40460

    Article  PubMed  CAS  Google Scholar 

  10. Legler JM et al (1999) Cancer surveillance series [corrected]: brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst 91(16):1382–1390

    Article  PubMed  CAS  Google Scholar 

  11. Yang, J, Everett AD (2007) Hepatoma-derived growth factor binds DNA through the N-terminal PWWP domain. BMC Mol Biol 8:101

    Article  PubMed  Google Scholar 

  12. Yang J, Everett AD (2009) Hepatoma-derived growth factor represses SET and MYND domain containing 1 gene expression through interaction with C-terminal binding protein. J Mol Biol 386(4):938–950

    Article  PubMed  CAS  Google Scholar 

  13. Lukasik SM et al (2006) High resolution structure of the HDGF PWWP domain: a potential DNA binding domain. Protein Sci 15(2):314–323

    Article  PubMed  CAS  Google Scholar 

  14. Kishima Y et al (2002) Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem 277(12):10315–10322

    Article  PubMed  CAS  Google Scholar 

  15. Everett AD et al (2004) Hepatoma-derived growth factor is a pulmonary endothelial cell-expressed angiogenic factor. Am J Physiol Lung Cell Mol Physiol 286(6):L1194–L1201

    Article  PubMed  CAS  Google Scholar 

  16. Everett AD (2001) Identification, cloning, and developmental expression of hepatoma-derived growth factor in the developing rat heart. Dev Dyn 222(3):450–458

    Article  PubMed  CAS  Google Scholar 

  17. Oliver JA, Al-Awqati Q (1998) An endothelial growth factor involved in rat renal development. J Clin Invest 102(6):1208–1219

    Article  PubMed  CAS  Google Scholar 

  18. Tsang TY et al (2008) Downregulation of hepatoma-derived growth factor activates the Bad-mediated apoptotic pathway in human cancer cells. Apoptosis 13(9):1135–1147

    Article  PubMed  CAS  Google Scholar 

  19. Tsang TY et al (2009) Mechanistic study on growth suppression and apoptosis induction by targeting hepatoma-derived growth factor in human hepatocellular carcinoma HepG2 cells. Cell Physiol Biochem 24(3–4):253–262

    Article  PubMed  CAS  Google Scholar 

  20. Yamamoto T et al (2009) Involvement of hepatoma-derived growth factor in the growth inhibition of hepatocellular carcinoma cells by vitamin K(2). J Gastroenterol 44(3):228–235

    Article  PubMed  CAS  Google Scholar 

  21. Bernard K et al (2003) Functional proteomic analysis of melanoma progression. Cancer Res 63(20):6716–6725

    PubMed  CAS  Google Scholar 

  22. Chang KC et al (2007) Hepatoma-derived growth factor is a novel prognostic factor for gastrointestinal stromal tumors. Int J Cancer 121(5):1059–1065

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto S et al (2006) Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clin Cancer Res 12(1):117–122

    Article  PubMed  CAS  Google Scholar 

  24. Hu TH et al (2009) The expression and prognostic role of hepatoma-derived growth factor in colorectal stromal tumors. Dis Colon Rectum 52(2):319–326

    Article  PubMed  Google Scholar 

  25. Hu TH et al (2003) Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 98(7):1444–1456

    Article  PubMed  CAS  Google Scholar 

  26. Ren H et al (2004) Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non-small-cell lung cancer. J Clin Oncol 22(16):3230–3237

    Article  PubMed  CAS  Google Scholar 

  27. Iwasaki T et al (2005) Hepatoma-derived growth factor as a prognostic marker in completely resected non-small-cell lung cancer. Oncol Rep 13(6):1075–1080

    PubMed  CAS  Google Scholar 

  28. Yamamoto S et al (2007) Expression level of hepatoma-derived growth factor correlates with tumor recurrence of esophageal carcinoma. Ann Surg Oncol 14(7):2141–2149

    Article  PubMed  Google Scholar 

  29. Uyama H et al (2006) Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clin Cancer Res 12(20 Pt 1):6043–6048

    Article  PubMed  CAS  Google Scholar 

  30. Liu, YF et al (2011) Expression and clinical significance of hepatoma-derived growth factor as a prognostic factor in human hilar cholangiocarcinoma. Ann Surg Oncol 18(3):872–879

    Article  PubMed  Google Scholar 

  31. Zhou Z et al (2004) Hepatoma-derived growth factor is a neurotrophic factor harbored in the nucleus. J Biol Chem 279(26):27320–27326

    Article  PubMed  CAS  Google Scholar 

  32. Marubuchi S et al (2006) Hepatoma-derived growth factor, a new trophic factor for motor neurons, is up-regulated in the spinal cord of PQBP-1 transgenic mice before onset of degeneration. J Neurochem 99(1):70–83

    Article  PubMed  CAS  Google Scholar 

  33. El-Tahir HM et al (2006) Expression of hepatoma-derived growth factor family members in the adult central nervous system. BMC Neurosci 7:6

    Article  PubMed  Google Scholar 

  34. Liu GS et al (2009) Prophylactic proopiomelanocortin expression alleviates capsaicin-induced neurogenic inflammation in rat trachea. Shock 32(6):645–650

    Article  PubMed  CAS  Google Scholar 

  35. Nakamura H et al (1994) Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem 269(40):25143–25149

    PubMed  CAS  Google Scholar 

  36. Klagsbrun M et al (1986) Human tumor cells synthesize an endothelial cell growth factor that is structurally related to basic fibroblast growth factor. Proc Natl Acad Sci USA 83(8):2448–2452

    Article  PubMed  CAS  Google Scholar 

  37. Everett AD et al (2000) Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. J Clin Invest 105(5):567–575

    Article  PubMed  CAS  Google Scholar 

  38. Everett AD, Stoops T, McNamara CA (2001) Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. J Biol Chem 276(40):37564–37568

    Article  PubMed  CAS  Google Scholar 

  39. Okuda Y et al (2003) Hepatoma-derived growth factor induces tumorigenesis in vivo through both direct angiogenic activity and induction of vascular endothelial growth factor. Cancer Sci 94(12):1034–1041

    Article  PubMed  CAS  Google Scholar 

  40. Zhang J et al (2006) Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer Res 66(1):18–23

    Article  PubMed  CAS  Google Scholar 

  41. Lepourcelet M et al (2005) Insights into developmental mechanisms and cancers in the mammalian intestine derived from serial analysis of gene expression and study of the hepatoma-derived growth factor (HDGF). Development 132(2):415–427

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Science Council (NSC 95-2311-B-214-001; NSC 96-2314-B-075B-007; NSC 98-2314-B-075B-006-MY3), Kaohsiung Veterans General Hospital(VGHKS-98-043; VGHKS-97-A010), and I-Shou University (ISU98-04-05), Taiwan.

Conflict of interest

None of the authors have conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Feng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, SS., Chen, CH., Liu, GS. et al. Tumorigenesis and prognostic role of hepatoma-derived growth factor in human gliomas. J Neurooncol 107, 101–109 (2012). https://doi.org/10.1007/s11060-011-0733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0733-z

Keywords

Navigation