Skip to main content

Advertisement

Log in

An in vivo mouse model of intraosseous spinal cancer causing evolving paraplegia

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The spine is the commonest site of skeletal metastatic disease and uncontrolled growth of cancer in the spine will inevitably cause pain and neurologic compromise. Improved understanding of the pathobiology behind this devastating condition is urgently needed. For this reason, the aim of this study was to establish a clinically relevant, animal model of spinal cancer. A percutaneous orthotopic injection of human breast (MDA-MB-231) or human prostate (PC-3) cancer cells was administered into the upper lumbar spine of nude mice (n = 6). Animals were monitored twice daily for general welfare, gait asymmetry or disturbance, and hindlimb weakness. After sacrifice, plain radiographs, micro-CT imaging and histological analysis of the spines were performed on each mouse. All mice recovered fully from the inoculation procedure and displayed normal gait and behaviour patterns for at least 3 weeks post-inoculation. Subsequently, between 3 and 5 weeks post-inoculation, each mouse developed evolving paralysis in their hindlimbs over 48–72 h. All followed the same pattern of decline following onset of neurological dysfunction; from gait asymmetry and unilateral hindlimb weakness, to complete unilateral hindlimb paralysis and finally to complete bilateral hindlimb paralysis. Plain radiographs, micro-CT scanning and histological analysis confirmed local tumour growth and destruction of the spine in all six mice. An in vivo mouse model of human intraosseous spinal cancer has been established forming cancers that grow within the spine and cause epidural spinal cord compression, resulting in a reproducible, evolving neurological deficit and paralysis that closely resembles the human condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Campbell JP, Karolak MR, Ma Y et al (2012) Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol 10:e1011363

    Article  Google Scholar 

  2. Ibrahim T, Flamini E, Mercatali L, Sacanna E, Serra P, Amadori D (2010) Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer 116:1406–1418

    Article  CAS  PubMed  Google Scholar 

  3. Jemal A, Siegel R, Ward E et al (2008) Cancer statistics. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  4. Sabino MA, Luger NM, Mach DB, Rogers SD, Schwei MJ, Mantyh PW (2003) Different tumours in bone each give rise to a distinct pattern of skeletal destruction, bone cancer-related pain behaviors and neurochemical changes in the central nervous system. Int J Cancer 104:550–558

    Article  CAS  PubMed  Google Scholar 

  5. Cossigny D, Quan GM (2012) In vivo animal models of spinal metastasis. Cancer Metastasis Rev 31:99–108

    Article  PubMed  Google Scholar 

  6. Dunn LK, Mohammad KS, Fournier PG et al (2009) Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumour cells and the bone microenvironment. PLoS One 4:e6896

    Article  PubMed Central  PubMed  Google Scholar 

  7. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664

    Article  CAS  PubMed  Google Scholar 

  8. Coleman RE (2008) Risks and benefits of bisphosphonates. Br J Cancer 98:1736–1740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lipton A (2008) Emerging role of bisphosphonates in the clinic–antitumour activity and prevention of metastasis to bone. Cancer Treat Rev 34:S25–S30

    Article  CAS  PubMed  Google Scholar 

  10. Quan GM, Vital JM, Aurouer N et al (2011) Surgery improves pain, function and quality of life in patients with spinal metastases: a prospective study on 118 patients. Eur Spine J 20:1970–1978

    Article  PubMed Central  PubMed  Google Scholar 

  11. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  CAS  PubMed  Google Scholar 

  12. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23:635–659

    Article  PubMed  Google Scholar 

  13. Lelekakis M, Moseley JM, Martin TJ et al (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17:163–170

    Article  CAS  PubMed  Google Scholar 

  14. Strube A, Stepina E, Mumberg D, Scholz A, Hauff P, Kakonen SM (2010) Characterization of a new renal cell carcinoma bone metastasis mouse model. Clin Exp Metastasis 27:319–330

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi M, Miyazaki H, Furihata M et al (2009) Chemokine CCL2/MCP-1 negatively regulates metastasis in a highly bone marrow-metastatic mouse breast cancer model. Clin Exp Metastasis 26:817–828

    Article  CAS  PubMed  Google Scholar 

  16. Arguello F, Baggs RB, Frantz CN (1988) A murine model of experimental metastasis to bone and bone marrow. Cancer Res 48:6876–6881

    CAS  PubMed  Google Scholar 

  17. Arguello F, Baggs RB, Duerst RE, Johnstone L, McQueen K, Frantz CN (1990) Pathogenesis of vertebral metastasis and epidural spinal cord compression. Cancer 65:98–106

    Article  CAS  PubMed  Google Scholar 

  18. Akens MK, Yee AJ, Wilson BC et al (2007) Photodynamic therapy of vertebral metastases: evaluating tumour-to-neural tissue uptake of BPD-MA and ALA-PpIX in a murine model of metastatic human breast carcinoma. Photochem Photobiol 83:1034–1039

    Article  CAS  PubMed  Google Scholar 

  19. Burch SP, Bisland SK, Wilson BC, Whyne C, Yee AJ (2007) Multimodality imaging for vertebral metastasis in a rat osteolytic model. Clin Orthop Rel Res 454:230–236

    Article  Google Scholar 

  20. Yoneda T (2000) Cellular and molecular basis of preferential metastasis of breast cancer to bone. J Orthop Sci 5:75–81

    Article  CAS  PubMed  Google Scholar 

  21. Mantha A, Legani FG, Bagley CA et al (2005) A novel rat model for the study of intraosseous metastatic spine cancer. J Neurosurg Spine 2:303–307

    Article  PubMed  Google Scholar 

  22. Amundson E, Pradilla G, Brastianos P et al (2005) A novel intravertebral tumour model in rabbits. Neurosurgery 57:341–346

    Article  PubMed  Google Scholar 

  23. Tatsui CE, Lang FF, Gumin J, Suki D, Shinojima N, Rhines LD (2009) An orthotopic murine model of human spinal metastasis: histological and functional correlations. J Neurosurg Spine 10:501–512

    Article  PubMed  Google Scholar 

  24. Zibly Z, Schlaff CD, Gordon I et al (2012) A novel rodent model of spinal metastasis and spinal cord compression. BMC Neuroscience 13:137

    Article  PubMed Central  PubMed  Google Scholar 

  25. Wang L, Rahman S, Lin CY et al (2012) A novel murine model of human renal cell carcinoma spinal metastasis. J Clin Neurosci 19:881–883

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ushio Y, Posner R, Posner JB, Shapiro WR (1977) Experimental spinal cord compression by epidural neoplasm. Neurology 27:422–429

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi M, Ogawa J, Kinoshita Y, Takakura M, Mochizuki K, Satomi K (2004) Experimental study of paraplegia caused by spinal tumours: an animal model of spinal tumours created by transplantation of VX2 carcinoma. Spine J 4:675–680

    Article  PubMed  Google Scholar 

  28. Bagley CA, Bookland MJ, Pindrik JA et al (2007) Fractionated, single-port radiotherapy delays paresis in a metastatic spinal tumour model in rats. J Neurosurg Spine 7:323–327

    Article  PubMed  Google Scholar 

  29. Bagley CA, Bookland MJ, Pindrik JA, Ozmen T, Gokaslan ZL, Witham TF (2007) Local delivery of oncogel delays paresis in rat metastatic spinal tumour model. J Neurosurg Spine 7:194–198

    Article  PubMed  Google Scholar 

  30. Gok B, McGirt M, Sciubba DM et al (2008) Surgical resection plus adjuvant radiotherapy is superior to surgery or radiotherapy alone in the prevention of neurological decline in a rat metastatic spinal tumour model. Neurosurgery 63:346–351

    Article  PubMed  Google Scholar 

  31. Liang H, Ma SY, Mohammad K, Guise TA, Balian G, Shen FH (2011) The reaction of bone to tumour growth from human breast cancer cells in a rat spine single metastasis model. Spine 36:497–504

    Article  PubMed Central  PubMed  Google Scholar 

  32. Hibberd C, Cossigny DA, Quan GM (2013) Animal cancer models of skeletal metastasis. Cancer Growth Metastasis 6:23–34

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Feeley BT, Krenek L, Liu N et al (2005) Overexpression of noggin inhibits BMP-mediated growth of osteolytic prostate cancer lesions. Bone 38:154–166

    Article  PubMed  Google Scholar 

  34. Hsu WK, Virk MS, Feeley BT et al (2008) Characterization of osteolytic, osteoblastic, and mixed lesions in a prostate cancer mouse model using 18F-FDG and 18F-Fluoride PET/CT. J Nucl Med 49:414–421

    Article  PubMed Central  PubMed  Google Scholar 

  35. Walchaure S, Swain TM, Hentunen TA et al (2009) Expression of macrophage inhibitory cytokine-1 in prostate cancer bone metastases induces osteoclast activation and weight loss. Prostate 69:652–661

    Article  Google Scholar 

  36. Bi X, Sterling JA, Merkel AR (2013) Prostate cancer metastases alter bone mineral and matrix composition independent of effects on bone architecture in mice- a quantitative study using microCT and Raman spectroscopy. Bone. doi:10.1016/j.bone.2013.07.006

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Health and Medical Research Council of Australia (Fellowship No. 558418), the Victorian Orthopaedic Research Trust and the Austin Health Medical Research Foundation. We thank Dr. Ali Ghasem Zadeh, Department of Medicine, University of Melbourne, Austin Health for the reconstruction of the micro-CT images.

Conflict of interest

The authors declare no conflict of interest and all procedures were approved by the Austin Health Ethics Committee (A2012-04395) and in accordance with University of Melbourne, Australia, guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald M. Y. Quan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cossigny, D.A.F., Mouhtouris, E., Dushyanthen, S. et al. An in vivo mouse model of intraosseous spinal cancer causing evolving paraplegia. J Neurooncol 115, 189–196 (2013). https://doi.org/10.1007/s11060-013-1226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1226-z

Keywords

Navigation