Skip to main content

Advertisement

Log in

Dura promotes metastatic potential in prostate cancer through the CXCR2 pathway

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Spinal metastases are common in cancer. This preferential migration/growth in the spine is not fully understood. Dura has been shown to affect the surrounding microenvironment and promote cancer growth. Here, we investigate the role of dural cytokines in promoting the metastatic potential of prostate cancer (PCa) and the involvement of the CXCR2 signaling pathway.

Methods

The role of dural conditioned media (DCM) in proliferation, migration and invasion of five PCa cell lines with various hormone sensitivities was assessed in the presence or absence of the CXCR2 inhibitor, SB225002. CXCR2 surface protein was examined by FACS. Cytokine levels were measured using a mouse cytokine array.

Results

We observed high levels of cytokines produced by dura and within the vertebral body bone marrow, namely CXCL1 and CXCL2, that act on the CXCR2 receptor. All prostate cell lines treated with DCM demonstrated significant increase in growth, migration and invasion regardless of androgen sensitivity, except PC3, which did not significantly increase in invasiveness. When treated with SB225002, the growth response to DCM by cells expressing the highest levels of CXCR2 as measured by FACS (LNCaP and 22Rv1) was blunted. The increase in migration was significantly decreased in all lines in the presence of SB225002. Interestingly, the invasion increase seen with DCM was unchanged when these cells were treated with the CXCR2 inhibitor, except PC3 did demonstrate a significant decrease in invasion.

Conclusion

DCM enhances the metastatic potential of PCa with increased proliferation, migration and invasion. This phenomenon is partly mediated through the CXCR2 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Roodman GD (2009) Pathophysiology of bone metastases. In: Kardamakis D, Vassiliou V, Chow E (eds) Bone metastases: a translational and clinical approach. Springer, Dordrecht

    Google Scholar 

  2. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593. https://doi.org/10.1038/nrc867

    Article  CAS  PubMed  Google Scholar 

  3. Jiang W, Rixiati Y, Zhao B, Li Y, Tang C, Liu J (2020) Incidence, prevalence, and outcomes of systemic malignancy with bone metastases. J Orthop Surg 28(2):2309499020915989. https://doi.org/10.1177/2309499020915989

    Article  Google Scholar 

  4. Algra PR, Heimans JJ, Valk J, Nauta J, Lachniet M, Van Kooten B (1992) Do metastases in vertebrae begin in the body or the pedicles? Imaging study in 45 patients. AJR Am J Roentgenol 158(6):1275–1279

    Article  CAS  PubMed  Google Scholar 

  5. Guo M, Kolberg KL, Smith EC, Smith BW, Yousif JE, Kessler JL, Linzey JR, Calinescu A-A, Clines GA, Spratt DE, Szerlip NJ (2018) Predominance of spinal metastases involving the posterior vertebral body. World Neurosurg 119:e991–e996. https://doi.org/10.1016/j.wneu.2018.08.029

    Article  PubMed  Google Scholar 

  6. Tiwana MS, Barnes M, Yurkowski E, Roden K, Olson RA (2016) Incidence and treatment patterns of complicated bone metastases in a population-based radiotherapy program. Radiother Oncol 118(3):552–556. https://doi.org/10.1016/j.radonc.2015.10.015

    Article  PubMed  Google Scholar 

  7. Sciubba DM, Petteys RJ, Dekutoski MB, Fisher CG, Fehlings MG, Ondra SL, Rhines LD, Gokaslan ZL (2010) Diagnosis and management of metastatic spine disease. J Neurosurg Spine 13(1):94–108. https://doi.org/10.3171/2010.3.SPINE09202

    Article  PubMed  Google Scholar 

  8. Bohm P, Huber J (2002) The surgical treatment of bony metastases of the spine and limbs. J Bone Joint Surg Br 84(4):521–529

    Article  CAS  PubMed  Google Scholar 

  9. Cameron Hatrick N, Lucas JD, Timothy AR, Smith MA (2000) The surgical treatment of metastatic disease of the spine. Radiother Oncol 56(3):335–339. https://doi.org/10.1016/S0167-8140(00)00199-7

    Article  Google Scholar 

  10. Harrington KD (1986) Metastatic disease of the spine. J Bone Joint Surg Am 68(7):1110–1115

    Article  CAS  PubMed  Google Scholar 

  11. Bubendorf L, Schöpfer A, Wagner U, Sauter G, Moch H, Willi N, Gasser TC, Mihatsch MJ (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31(5):578–583. https://doi.org/10.1053/hp.2000.6698

    Article  CAS  PubMed  Google Scholar 

  12. Harada M, Shimizu A, Nakamura Y, Nemoto R (1992) Role of the vertebral venous system in metastatic spread of cancer cells to the bone. Adv Exp Med Biol 324:83–92

    Article  CAS  PubMed  Google Scholar 

  13. Muresan MM, Olivier P, Leclère J, Sirveaux F, Brunaud L, Klein M, Zarnegar R, Weryha G (2008) Bone metastases from differentiated thyroid carcinoma. Endocr Relat Cancer 15(1):37–49. https://doi.org/10.1677/ERC-07-0229

    Article  CAS  PubMed  Google Scholar 

  14. Simmons JK, Hildreth BE 3rd, Supsavhad W, Elshafae SM, Hassan BB, Dirksen WP, Toribio RE, Rosol TJ (2015) Animal models of bone metastasis. Vet Pathol 52(5):827–841. https://doi.org/10.1177/0300985815586223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paget S (1889) The distribution of secondary growths in cancer of the breast. The Lancet 133(3421):571–573. https://doi.org/10.1016/S0140-6736(00)49915-0

    Article  Google Scholar 

  16. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. https://doi.org/10.1038/nm.3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gagan JR, Tholpady SS, Ogle RC (2007) Cellular dynamics and tissue interactions of the dura mater during head development. Birth Defects Res C Embryo Today 81(4):297–304. https://doi.org/10.1002/bdrc.20104

    Article  CAS  PubMed  Google Scholar 

  18. Spector JA, Greenwald JA, Warren SM, Bouletreau PJ, Detch RC, Fagenholz PJ, Crisera FE, Longaker MT (2002) Dura mater biology: autocrine and paracrine effects of fibroblast growth factor 2. Plast Reconstr Surg 109(2):645–654. https://doi.org/10.1097/00006534-200202000-00035

    Article  PubMed  Google Scholar 

  19. Levi B, Nelson ER, Li S, James AW, Hyun JS, Montoro DT, Lee M, Glotzbach JP, Commons GW, Longaker MT (2011) Dura mater stimulates human adipose-derived stromal cells to undergo bone formation in mouse calvarial defects. Stem Cells 29(8):1241–1255. https://doi.org/10.1002/stem.670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Szerlip NJ, Calinescu A, Smith E, Tagett R, Clines KL, Moon HH, Taichman RS, Van Poznak CH, Clines GA (2018) Dural cells release factors which promote cancer cell malignancy and induce immunosuppressive markers in bone marrow myeloid cells. Neurosurgery 83(6):1306–1316. https://doi.org/10.1093/neuros/nyx626

    Article  PubMed  PubMed Central  Google Scholar 

  21. Olson TS, Ley K (2002) Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol 283(1):R7–R28. https://doi.org/10.1152/ajpregu.00738.2001

    Article  CAS  PubMed  Google Scholar 

  22. Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA (2006) Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 42(6):768–778. https://doi.org/10.1016/j.ejca.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  23. Veenstra M, Ransohoff RM (2012) Chemokine receptor CXCR2: physiology regulator and neuroinflammation controller? J Neuroimmunol 246(1):1–9. https://doi.org/10.1016/j.jneuroim.2012.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Le Y, Zhou Y, Iribarren P, Wang J (2004) Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 1(2):95–104

    CAS  PubMed  Google Scholar 

  25. Jaffer T, Ma D (2016) The emerging role of chemokine receptor CXCR2 in cancer progression. Transl Cancer Res 5:S616–S628

    Article  CAS  Google Scholar 

  26. Zhang H, Ye YL, Li MX, Ye SB, Huang WR, Cai TT, He J, Peng JY, Duan TH, Cui J, Zhang XS, Zhou FJ, Wang RF, Li J (2017) CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene 36(15):2095–2104. https://doi.org/10.1038/onc.2016.367

    Article  CAS  PubMed  Google Scholar 

  27. Cheng Y, Ma X-l, Wei Y-Q, Wei X-W (2019) Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 1872(2):289–312. https://doi.org/10.1016/j.bbcan.2019.01.005

    Article  CAS  Google Scholar 

  28. Yang G, Rosen DG, Liu G, Yang F, Guo X, Xiao X, Xue F, Mercado-Uribe I, Huang J, Lin S-H, Mills GB, Liu J (2010) CXCR2 promotes ovarian cancer growth through dysregulated cell cycle, diminished apoptosis, and enhanced angiogenesis. Clin Cancer Res 16(15):3875–3886. https://doi.org/10.1158/1078-0432.CCR-10-0483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gabellini C, Trisciuoglio D, Desideri M, Candiloro A, Ragazzoni Y, Orlandi A, Zupi G, Del Bufalo D (2009) Functional activity of CXCL8 receptors, CXCR1 and CXCR2, on human malignant melanoma progression. Eur J Cancer 45(14):2618–2627. https://doi.org/10.1016/j.ejca.2009.07.007

    Article  CAS  PubMed  Google Scholar 

  30. Singh S, Singh AP, Sharma B, Owen LB, Singh RK (2010) CXCL8 and its cognate receptors in melanoma progression and metastasis. Future Oncol 6(1):111–116. https://doi.org/10.2217/fon.09.128

    Article  CAS  PubMed  Google Scholar 

  31. Matsuo Y, Raimondo M, Woodward TA, Wallace MB, Gill KR, Tong Z, Burdick MD, Yang Z, Strieter RM, Hoffman RM, Guha S (2009) CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer. Int J Cancer 125(5):1027–1037. https://doi.org/10.1002/ijc.24383

    Article  CAS  PubMed  Google Scholar 

  32. Reiland J, Furcht LT, McCarthy JB (1999) CXC-chemokines stimulate invasion and chemotaxis in prostate carcinoma cells through the CXCR2 receptor. Prostate 41(2):78–88

    Article  CAS  PubMed  Google Scholar 

  33. Liu Z, Yang L, Xu J, Zhang X, Wang B (2011) Enhanced expression and clinical significance of chemokine receptor CXCR2 in hepatocellular carcinoma. J Surg Res 166(2):241–246. https://doi.org/10.1016/j.jss.2009.07.014

    Article  CAS  PubMed  Google Scholar 

  34. Han L, Jiang B, Wu H, Wang X, Tang X, Huang J, Zhu J (2012) High expression of CXCR2 is associated with tumorigenesis, progression, and prognosis of laryngeal squamous cell carcinoma. Med Oncol 29(4):2466–2472. https://doi.org/10.1007/s12032-011-0152-1

    Article  CAS  PubMed  Google Scholar 

  35. Saintigny P, Massarelli E, Lin S, Ahn Y-H, Chen Y, Goswami S, Erez B, O’Reilly MS, Liu D, Lee JJ, Zhang L, Ping Y, Behrens C, Solis Soto LM, Heymach JV, Kim ES, Herbst RS, Lippman SM, Wistuba II, Hong WK, Kurie JM, Koo JS (2013) CXCR2 expression in tumor cells is a poor prognostic factor and promotes invasion and metastasis in lung adenocarcinoma. Cancer Res 73(2):571–582. https://doi.org/10.1158/0008-5472.CAN-12-0263

    Article  CAS  PubMed  Google Scholar 

  36. Cooper CR, Chay CH, Gendernalik JD, Lee HL, Bhatia J, Taichman RS, McCauley LK, Keller ET, Pienta KJ (2003) Stromal factors involved in prostate carcinoma metastasis to bone. Cancer 97(3 Suppl):739–747. https://doi.org/10.1002/cncr.11181

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Loberg R, Taichman RS (2006) The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 25(4):573–587. https://doi.org/10.1007/s10555-006-9019-x

    Article  CAS  PubMed  Google Scholar 

  38. Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, Foth M, Bryson S, McDaid K, Wilson Z, Eberlein C, Candido JB, Clarke M, Nixon C, Connelly J, Jamieson N, Carter CR, Balkwill F, Chang DK, Evans TRJ, Strathdee D, Biankin AV, Nibbs RJB, Barry ST, Sansom OJ, Morton JP (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29(6):832–845. https://doi.org/10.1016/j.ccell.2016.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Araki S, Omori Y, Lyn D, Singh RK, Meinbach DM, Sandman Y, Lokeshwar VB, Lokeshwar BL (2007) Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res 67(14):6854–6862. https://doi.org/10.1158/0008-5472.Can-07-1162

    Article  CAS  PubMed  Google Scholar 

  40. Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, Chen Y, Han X, Wu K (2016) The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. https://doi.org/10.1016/j.cytogfr.2016.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  41. Murphy C, McGurk M, Pettigrew J, Santinelli A, Mazzucchelli R, Johnston PG, Montironi R, Waugh DJ (2005) Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer. Clin Cancer Res 11(11):4117–4127. https://doi.org/10.1158/1078-0432.Ccr-04-1518

    Article  CAS  PubMed  Google Scholar 

  42. Li S, Quarto N, Longaker MT (2007) Dura mater-derived FGF-2 mediates mitogenic signaling in calvarial osteoblasts. Am J Physiol Cell Physiol 293(6):C1834–C1842

    Article  CAS  PubMed  Google Scholar 

  43. Spector JA, Greenwald JA, Warren SM, Bouletreau PJ, Crisera FE, Mehrara BJ, Longaker MT (2002) Co-culture of osteoblasts with immature dural cells causes an increased rate and degree of osteoblast differentiation. Plast Reconstr Surg 109(2):631–642 (discussion 643-634)

    Article  PubMed  Google Scholar 

  44. Ahuja SK, Murphy PM (1996) The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J Biol Chem 271(34):20545–20550. https://doi.org/10.1074/jbc.271.34.20545

    Article  CAS  PubMed  Google Scholar 

  45. Murphy PM, Tiffany HL (1991) Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 253(5025):1280–1283. https://doi.org/10.1126/science.1891716

    Article  CAS  PubMed  Google Scholar 

  46. Lee J, Horuk R, Rice GC, Bennett GL, Camerato T, Wood WI (1992) Characterization of two high affinity human interleukin-8 receptors. J Biol Chem 267(23):16283–16287

    Article  CAS  PubMed  Google Scholar 

  47. Rajagopalan L, Rajarathnam K (2004) Ligand selectivity and affinity of chemokine receptor CXCR1. Role of N-terminal domain. J Biol Chem 279(29):30000–30008. https://doi.org/10.1074/jbc.M313883200

    Article  CAS  PubMed  Google Scholar 

  48. Attal H, Cohen-Hillel E, Meshel T, Wang JM, Gong W, Ben-Baruch A (2008) Intracellular cross-talk between the GPCR CXCR1 and CXCR2: role of carboxyl terminus phosphorylation sites. Exp Cell Res 314(2):352–365. https://doi.org/10.1016/j.yexcr.2007.09.019

    Article  CAS  PubMed  Google Scholar 

  49. Richardson RM, Pridgen BC, Haribabu B, Ali H, Snyderman R (1998) Differential cross-regulation of the human chemokine receptors CXCR1 and CXCR2. Evidence for time-dependent signal generation. J Biol Chem 273(37):23830–23836. https://doi.org/10.1074/jbc.273.37.23830

    Article  CAS  PubMed  Google Scholar 

  50. Shamaladevi N, Lyn DA, Escudero DO, Lokeshwar BL (2009) CXC receptor-1 silencing inhibits androgen-independent prostate cancer. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-09-0374

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lee LF, Louie MC, Desai SJ, Yang J, Chen HW, Evans CP, Kung HJ (2004) Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene 23(12):2197–2205. https://doi.org/10.1038/sj.onc.1207344

    Article  CAS  PubMed  Google Scholar 

  52. Seaton A, Scullin P, Maxwell PJ, Wilson C, Pettigrew J, Gallagher R, O’Sullivan JM, Johnston PG, Waugh DJ (2008) Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis 29(6):1148–1156. https://doi.org/10.1093/carcin/bgn109

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tom Cichonski for assistance with the preparation of this manuscript.

Funding

This work was supported in part by National Institutes of Health grant R21NS107879 (Alexandra Calinescu), P01CA093900 (R.T.), Rogel Cancer Center Grant G020989 (Alexandra Calinescu, N.J.S.), the Department of Defense Prostate Cancer Research Program PC170089 Early Investigator Award (N.J.S.), and VA Merit Review 1I01BX001370 (G.A.C.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection and analysis were performed by MS, SR, RT, GC, and NS. The first draft of the manuscript was written by MS and NS, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nicholas J. Szerlip.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strong, M.J., Rocco, S., Taichman, R. et al. Dura promotes metastatic potential in prostate cancer through the CXCR2 pathway. J Neurooncol 153, 33–42 (2021). https://doi.org/10.1007/s11060-021-03752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03752-4

Keywords

Navigation