Skip to main content
Log in

Brain Region-Specific Effects of Short-Term Treatment with Duloxetine, Venlafaxine, Milnacipran and Sertraline on Monoamine Metabolism in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We examined brain region-specific changes in monoamines and metabolites, and their ratios, after short-term administration of antidepressants to rats. Serotonin noradrenaline reuptake inhibitors (SNRIs; duloxetine, venlafaxine, milnacipran) and a serotonin-selective reuptake inhibitor (SSRI; sertraline) elevated serotonin (5-HT) levels in the midbrain (MB). Duloxetine and venlafaxine increased 5-HT levels in the brainstem and 5-HT terminal areas, whereas milnacipran and sertraline increased levels in the brainstem only. Significant reductions in 5-HT turnover were observed in various forebrain regions, including the hippocampus and hypothalamus, after treatment with all of the tested drugs except for milnacipran. In addition, there was reduced 5-HT turnover in the dorsolateral frontal cortex (dlFC), the medial prefrontal cortex (mPFC), and both the dlFC and the mPFC after treatment with duloxetine, sertraline, and venlafaxine, respectively. Venlafaxine significantly increased dopamine (DA) levels in the nucleus accumbens (NAc) and the substantia nigra and decreased DA turnover in the NAc. Similar changes were observed after treatment with duloxetine and sertraline in the NAc, whereas milnacipran increased DA levels in the mPFC. Limited increases in noradrenaline levels were detected after treatment with duloxetine, venlafaxine, or sertraline, but not after treatment with milnacipran. These results show that SNRIs and SSRIs induced region-specific monoaminergic changes after short-term treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blier P, Abbott FV (2001) Putative mechanisms of action of antidepressant drugs in affective and anxiety disorders and pain. J Psychiatry Neurosci 26:37–43

    PubMed  CAS  Google Scholar 

  2. Blier P, deMontigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220–226. doi:10.1016/0165-6147(94)90315-8

    PubMed  CAS  Google Scholar 

  3. Carey PD, Warwick J, Niehaus DJ et al (2004) Single photon emission computed tomography (SPECT) of anxiety disorders before and after treatment with citalopram. BMC Psychiatry 4:30. doi:10.1186/1471-244X-4-30

    PubMed  Google Scholar 

  4. Delgado PL (2004) Common pathways of depression and pain. J Clin Psychiatry 65(Suppl 12):16–19

    PubMed  Google Scholar 

  5. Maron E, Shlik J (2006) Serotonin function in panic disorder: important, but why? Neuropsychopharmacology 31:1–11. doi:10.1038/sj.npp.1301265

    PubMed  CAS  Google Scholar 

  6. Silverstone PH (2004) Qualitative review of SNRIs in anxiety. J Clin Psychiatry 65:19–28

    PubMed  CAS  Google Scholar 

  7. Smith NL (2004) Serotonin mechanisms in pain and functional syndromes: management implications in comorbid fibromyalgia, headache, and irritable bowel syndrome—case study and discussion. J Pain Palliat Care Pharmacother 18:31–45. doi:10.1300/J354v18n04_04

    PubMed  Google Scholar 

  8. Celada P, Puig MV, Amargós-Bosch M et al (2004) The therapeutic role of 5-HT1A anf 5-HT2A receptors in depression. J Psychiatry Neurosci 29:252–265

    PubMed  Google Scholar 

  9. Roseboom PH, Kalin NH (2000) Neuropharmacology of venlafaxine. Depress Anxiety 12(supplement 1):20–29. doi :10.1002/1520-6394(2000)12:1+<20::AID-DA3>3.0.CO;2-M

    PubMed  Google Scholar 

  10. Rueter LE, deMontigny C, Blier P (1998) Electrophysiological characterization of the effect of long-term duloxetine administration on the rat serotonergic and noradrenergic system. J Pharmacol Exp Ther 285:404–412

    PubMed  CAS  Google Scholar 

  11. Haddjeri N, Blier P, deMontigny C (1998) Long-term antidepressant treatments result in a tonic activation of forebrain 5-HT1A receptors. J Neurosci 18:10150–10156

    PubMed  CAS  Google Scholar 

  12. Gur E, Dremencov E, Lerer B et al (1999) Venlafaxine: acute and chronic effects on 5-hydroxytryptamine levels in rat brain in vivo. Eur J Pharmacol 372:1999. doi:10.1016/S0014-2999(99)00164-8

    Google Scholar 

  13. Briley M, Prost JF, Moret C (1996) Preclinical pharmacology of milnacipran. Int Clin Psychopharmacol 11:9–14. doi:10.1097/00004850-199609004-00002

    PubMed  Google Scholar 

  14. Anderson GM, Barr CS, Lindell S et al (2005) Time course of the effects of the serotonin-selective inhibitor sertraline on central and peripheral serotonin neurochemistry in the rhesus monkey. Psychopharmacology (Berl) 178:339–346. doi:10.1007/s00213-004-2011-7

    CAS  Google Scholar 

  15. Nikisch G, Mathe AA, Czernik A et al (2004) Stereoselective metabolism of citalopram in plasma and cerebrospinal fluid of depressive patients: relationship with 5-HIAA in CSF and clinical response. J Clin Psychopharmacol 24:283–290. doi:10.1097/01.jcp.0000125680.89843.a6

    PubMed  CAS  Google Scholar 

  16. Aznavour N, Rbah L, Riad M et al (2006) A PET imaging study of 5-HT1A receptors in cat brain after acute and chronic fluoxetine treatment. Neuroimage 33:834–842. doi:10.1016/j.neuroimage.2006.08.012

    PubMed  Google Scholar 

  17. Hirschfeld RM, Mallinckrodt C, Lee TC et al (2005) Time course of depression-symptom improvement during treatment with duloxetine. Depress Anxiety 21:170–177. doi:10.1002/da.20071

    PubMed  CAS  Google Scholar 

  18. Hindmarch I (2001) Expanding the horizons of depression: beyond the monoamine hypothesis. Hum Psychopharmacol 16:203–218. doi:10.1002/hup.288

    PubMed  CAS  Google Scholar 

  19. Shirayama Y, Chaki S (2006) Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol 4:277–291. doi:10.2174/157015906778520773

    PubMed  CAS  Google Scholar 

  20. Williams GV, Rao SG, Goldman-Rakic PS (2002) The physiological role of 5-HT2A receptors in working memory. J Neurosci 22:2843–2854

    PubMed  CAS  Google Scholar 

  21. Aouizerate B, Guehl D, Cuny E et al (2004) Pathophysiology of obsessive-compulsive disorder. A necessary link between phenomenology, neuropsychology, imagery and physiology. Prog Neurobiol 72:195–221. doi:10.1016/j.pneurobio.2004.02.004

    PubMed  Google Scholar 

  22. Whiteside SP, Port JD, Abramowitz JS (2004) A meta-analysis of functional neuroimaging in obsessive-compulsive disorder. Psychiatry Res 132:69–79. doi:10.1016/j.pscychresns.2004.07.001

    PubMed  Google Scholar 

  23. Coghill RC, McHaffie JG, Yen Y-F (2003) Neural correlates of interindividual differences in the subjective experience of pain. Proc Natl Acad Sci USA 100:8538–8542. doi:10.1073/pnas.1430684100

    PubMed  CAS  Google Scholar 

  24. McQuay HJ, Tramer M, Nye BA et al (1996) A systematic review of antidepressants in neuropathic pain. Pain 68:217–227. doi:10.1016/S0304-3959(96)03140-5

    PubMed  CAS  Google Scholar 

  25. Ohara PT, Vit JP, Jasmin L (2005) Cortical modulation of pain. Cell Mol Life Sci 62:44–52

    PubMed  CAS  Google Scholar 

  26. Lumia AR, Teicher MH, Salchli F et al (1992) Olfactory bulbectomy as a model for agitated hyposerotonergic depression. Brain Res 587:181–185. doi:10.1016/0006-8993(92)90995-L

    PubMed  CAS  Google Scholar 

  27. Zhou D, Grecksch G, Becker A et al (1998) Serotonergic hyperinnervation of the frontal cortex in an animal model of depression, the bulbectomized rat. J Neurosci Res 54:109–116. doi 10.1002/(SICI)1097-4547(19981001)54:1<109::AID-JNR11>3.0.CO;2-2

    PubMed  CAS  Google Scholar 

  28. De La Garza RII, Mahoney JJIII (2004) A distinct neurochemical profile in WKY rats at baseline and in response to acute stress: implications for animal models of anxiety and depression. Brain Res 1021:209–218. doi:10.1016/j.brainres.2004.06.052

    Google Scholar 

  29. Zangen A, Overstreet DH, Yadid G (1997) High serotonin and 5-hydroxyindoleacetic acid levels in limbic brain regions in a rat model of depression; normalization by chronic antidepressant treatment. J Neurochem 69:2477–2483

    Article  PubMed  CAS  Google Scholar 

  30. Zangen A, Overstreet DH, Yadid G (1999) Increased catecholamine levels in specific brain regions of a rat model of depression: normalization by chronic antidepressant treatment. Brain Res 824:243–250. doi:10.1016/S0006-8993(99)01214-7

    PubMed  CAS  Google Scholar 

  31. Caccia S, Anelli M, Codegoni AM et al (1993) The effects of single and repeated anorectic doses of 5-hydroxytryptamine uptake inhibitors on indole levels in rat brain. Br J Pharmacol 110:355–359

    PubMed  CAS  Google Scholar 

  32. Caccia S, Fracasso C, Garattini S et al (1992) Effects of short- and long-term administration of fluoxetine on the monoamine content of rat brain. Neuropharmacology 31:343–347. doi:10.1016/0028-3908(92)90066-X

    PubMed  CAS  Google Scholar 

  33. Carlson JN, Visker KE, Nielsen DM et al (1996) Chronic antidepressant drug treatment reduces turning behavior and increases dopamine levels in the medial prefrontal cortex. Brain Res 707:122–126. doi:10.1016/0006-8993(95)01341-5

    PubMed  CAS  Google Scholar 

  34. Frankfurt M, McKittrick CR, Luine VN (1994) Short-term fluoxetine treatment alters monoamine levels and turnover in discrete brain nuclei. Brain Res 650:127–132. doi:10.1016/0006-8993(94)90214-3

    PubMed  CAS  Google Scholar 

  35. Hall LM, Anderson GM, Cohen DJ (1995) Acute and chronic effects of fluoxetine and haloperidol on mouse brain serotonin and norepinephrine turnover. Life Sci 57:791–801. doi:10.1016/0024-3205(95)02007-6

    PubMed  CAS  Google Scholar 

  36. Klimek V, Zak-Knapik J, Mackowiak M (1994) Effects of repeated treatment with fluoxetine and citalopram, 5-HT2 receptors in the rat brain. J Psychiatry Neurosci 19:63–67

    PubMed  CAS  Google Scholar 

  37. Baumann P (1996) Pharmacology and pharmacokinetics of citalopran and other SSRIs. Int Clin Psychopharmacol 11:5–11. doi:10.1097/00004850-199603001-00002

    PubMed  Google Scholar 

  38. Millan MJ, Gobert A, Lejeune F et al (2001) S33005, a novel ligand at both serotonin and norepinephrine transporter: I. Receptor binding, electrophysiological, and neurochemical profile in comparison with venlafaxine, reboxetine, citalopram, and clomipramine. J Pharmacol Exp Ther 298:565–580

    PubMed  CAS  Google Scholar 

  39. Moret C, Briley M (1992) Effect of antidepressant drugs on monoamine synthesis in brain in vivo. Neuropharmacology 31:679–684. doi:10.1016/0028-3908(92)90146-G

    PubMed  CAS  Google Scholar 

  40. Wong DT (1998) Duloxetine (LY248686): an inhibitor of serotonin and noradrenaline uptake and an antidepressant drug candidate. Expert Opin Investig Drugs 7:1691–1699. doi:10.1517/13543784.7.10.1691

    PubMed  CAS  Google Scholar 

  41. Bymaster FP, Dreshfield-Ahmad LJ, Threlkeld PG et al (2001) Comparative affinity of duloxetine and venlafaxine for serotonin and norepinephrine transporters in vitro and in vivo, human serotonin receptor subtypes, and other neuronal receptors. Neuropsychopharmacology 25:871–880. doi:10.1016/S0893-133X(01)00298-6

    PubMed  CAS  Google Scholar 

  42. Heimke C, Härtter S (2000) Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 85:11–28. doi:10.1016/S0163-7258(99)00048-0

    Google Scholar 

  43. Wong DT, Bymaster FP, Mayle DA et al (1993) LY248686, a new inhibitor of serotonin and norepinephrine uptake. Neuropsychopharmacology 8:23–33

    PubMed  CAS  Google Scholar 

  44. Hrdina PD, Vu TB (1993) Chronic fluoxetine treatment upregulates 5-HT uptake sites and 5-HT2 receptors in rat brain: an autoradiographic study. Synapse 1993:324–331. doi:10.1002/syn.890140410

    Google Scholar 

  45. Nalepa I, Vetulani J (1993) Enhancement of the responsiveness of cortical adrenergic receptors by chronic administration of the 5-hydroxytryptamine uptake inhibitor citalopram. J Neurochem 60:2029–2035. doi:10.1111/j.1471-4159.1993.tb03487.x

    PubMed  CAS  Google Scholar 

  46. Kelly JP, Leonard BE (1994) The effect of tianeptine and sertraline in three animal models of depression. Neuropharmacology 33:1011–1016. doi:10.1016/0028-3908(94)90160-0

    PubMed  CAS  Google Scholar 

  47. Millan MJ, Dekeyne A, Papp M et al (2001) S33005, a novel ligand at both serotonin and norepinephrine transporter: II. Behavioral profile in comparison with venlafaxine, reboxetine, citalopram, and clomipramine. J Pharmacol Exp Ther 298:581–591

    PubMed  CAS  Google Scholar 

  48. Rénéric J-P, Bouvard M, Stinus L (2001) Idazoxan and 8-OH-DPAT modify the behavioral effects induced by either NA, or 5-HT, or dual NA/5-HT reuptake inhibition in the rat forced swimming test. Neuropsychopharmacology 24:379–390. doi:10.1016/S0893-133X(00)00214-1

    PubMed  Google Scholar 

  49. Rénéric J-P, Lucki I (1998) Antidepressant behavioral effects by dual inhibition of monoamine reuptake in the rat forced swimming test. Psychopharmacology (Berl) 136:190–197. doi:10.1007/s002130050555

    Google Scholar 

  50. Mochizuki D, Tsujita R, Yamada S et al (2002) Neurochemical and behavioural characterization of milnacipran, a serotonin and noradrenaline reuptake inhibitor in rats. Psychopharmacology (Berl) 162:323–332. doi:10.1007/s00213-002-1111-5

    CAS  Google Scholar 

  51. Rénéric J-P, Bouvard M, Stinus L (2002) In the rat forced swimming test, chronic but not subacute administration of dual 5-HT/NA antidepressant treatments may produce greater effects than selective drugs. Behav Brain Res 136:521–532. doi:10.1016/S0166-4328(02)00203-6

    PubMed  Google Scholar 

  52. Rénéric J-P, Bouvard M, Stinus L (2002) In the forced swimming test, NA-system mediated interactions may prevent the 5-HT properties of some subacute antidepressant treatments being expressed. Eur Neuropsychopharmacol 12:159–171. doi:10.1016/S0924-977X(02)00007-X

    PubMed  Google Scholar 

  53. Muneoka K, Mikuni M, Ogawa T et al (1997) Prenatal dexamethasone exposure alters brain monoamine metabolism and adrenocortical response in rat offspring. Am J Physiol 273:R1669–R1675

    PubMed  CAS  Google Scholar 

  54. Adell A, Celada P, Abellán MT et al (2002) Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Brain Res Rev 39:154–180. doi:10.1016/S0165-0173(02)00182-0

    PubMed  CAS  Google Scholar 

  55. Parsey RV, Hastings RS, Oquendo MA et al (2006) Lower serotonin transporter binding potential in the human brain during major depression episodes. Am J Psychiatry 163:52–58. doi:10.1176/appi.ajp.163.1.52

    PubMed  Google Scholar 

  56. Underwood MD, Khaibulina AA, Ellis SP et al (1999) Morphometry of the dorsal raphe nucleus serotonergic meurons in suicide victims. Biol Psychiatry 46:473–483. doi:10.1016/S0006-3223(99)00043-8

    PubMed  CAS  Google Scholar 

  57. Bach-Mizrachi H, Underwood MD, Kassir SA et al (2006) Neuronal tryptophan hydroxylase mRNA expression in the human dorsal and median raphe nuclei: major depression and suicide. Neuropsychopharmacology 31:814–824. doi:10.1038/sj.npp.1300897

    PubMed  CAS  Google Scholar 

  58. Fuller RW, Hemrick-Luecke SK, Snoddy HD (1994) Effects of duloxetine, an antidepressant drug candidate, on concentrations of monoamines and their metabolites in rats and mice. J Pharmacol Exp Ther 269:132–136

    PubMed  CAS  Google Scholar 

  59. De La Garza RII, Jentsch JD, Verrico CD et al (2002) Adaptation of monoaminergic responses to phencyclidine in nucleus accumbens and prefrontal cortex following repeated treatment with fluoxetine or imipramine. Brain Res 958:20–27. doi:10.1016/S0006-8993(02)03772-1

    Google Scholar 

  60. Nakayama K, Katsu H, Ando T et al (2003) Possible alteration of tryptophan metabolism following repeated administration of sertraline in the rat brain. Brain Res Bull 59:293–297. doi:10.1016/S0361-9230(02)00886-9

    PubMed  CAS  Google Scholar 

  61. Bandoh T, Hayashi M, Ino K et al (2004) Acute effect of milnacipran on the relationship between the locus coeruleus noradrenergic and dorsal raphe serotonergic neuronal transmitters. Eur Neuropsychopharmacol 14:471–478. doi:10.1016/j.euroneuro.2004.01.003

    PubMed  CAS  Google Scholar 

  62. Bel N, Artigas F (1996) In vivo effects of the simultaneous blockade of serotonin and norepinephrine transporters on serotonergic function. Microdialysis study. J Pharmacol Exp Ther 278:1064–1072

    PubMed  CAS  Google Scholar 

  63. Sarkissian CF, Wurtman RJ, Morse AN et al (1990) Effects of fluoxetine or D-fenfluramine on serotonin release from, and levels in, rat frontal cortex. Brain Res 529:294–301. doi:10.1016/0006-8993(90)90840-8

    PubMed  CAS  Google Scholar 

  64. Wikell C, Bergqvist PBF, Hjorth S et al (1998) Brain monoamine output alterations after a single venlafaxine challenge in experimental hepatic encephalopathy. Clin Neuropharmacol 21:296–306

    PubMed  CAS  Google Scholar 

  65. Koch S, Hemrick-Luecke SK, Thompson LK et al (2003) Comparison of effects of dual transporter inhibitors on monoamine transporters and extracellular levels in rats. Neuropharmacology 45:935–944. doi:10.1016/S0028-3908(03)00268-5

    PubMed  CAS  Google Scholar 

  66. Mongeau R, Weiss M, deMontigny C et al (1998) Effect of acute, short- and long-term milnacipran administration on rat locus coeruleus noradrenergic and dorsal raphe serotonergic neurons. Neuropharmacology 37:905–918. doi:10.1016/S0028-3908(98)00083-5

    PubMed  CAS  Google Scholar 

  67. Felton TM, Kang TB, Hjorth S et al (2003) Effects of selective serotonin and serotonin/noradrenaline reuptake inhibitors on extracellular serotonin in rat diencephalon and frontal cortex. Naunyn Schmiedebergs Arch Pharmacol 367:297–305. doi:10.1007/s00210-002-0688-x

    PubMed  CAS  Google Scholar 

  68. Kihara T, Ikeda M (1995) Effects of duloxetine, a new serotonin and norepinephrine uptake inhibitor, on extracellular monoamine levels in rat frontal cortex. J Pharmacol Exp Ther 272:177–183

    PubMed  CAS  Google Scholar 

  69. Millan MJ, Brocco M, Veiga S et al (1998) WAY100,635 enhances both the ‘antidepressant’ actions of duloxetine and its influence on dialysate levels of serotonin in frontal cortex. Eur J Pharmacol 341:165–167. doi:10.1016/S0014-2999(97)01445-3

    PubMed  CAS  Google Scholar 

  70. Gobert A, Millan MJ (1999) Modulation of dialysate levels of dopamine, noradrenaline, and serotonin (5-HT) in the frontal cortex of freely-moving rats by (−)-pindorol alone and in association with 5-HT reuptake inhibitors: comparative roles of ß-adrenergic, 5-HT1A, and 5-HT1B receptors. Neuropsychopharmacology 21:268–284. doi:10.1016/S0893-133X(99)00035-4

    PubMed  CAS  Google Scholar 

  71. Dawson LA, Hguyen HQ, Geiger A (1999) Effects of venlafaxine on extracellular concentrations of 5-HT and noradrenaline in the rat frontal cortex: augmentation via 5-HT1A receptor antagonism. Neuropharmacology 38:1153–1163. doi:10.1016/S0028-3908(99)00052-0

    PubMed  CAS  Google Scholar 

  72. Bymaster FP, Zhang W, Carter PA et al (2002) Fluoxetine, but not other selective serotonin uptake inhibitors, increases norepinephrine and dopamine extracellular levels in prefrontal cortex. Psychopharmacology (Berl) 160:353–361. doi:10.1007/s00213-001-0986-x

    CAS  Google Scholar 

  73. Kitaichi Y, Inoue T, Nakagawa S et al (2005) Effect of milnacipran on extracellular monoamine concentrations in the medial prefrontal cortex of rats pre-treated with lithium. Eur J Pharmacol 516:219–226. doi:10.1016/j.ejphar.2005.04.038

    PubMed  CAS  Google Scholar 

  74. Bel N, Artigas F (1999) Modulation of the extracellular 5-hydroxytryptamine brain concentrations by the serotonin and noradrenaline reuptake inhibitor, milnacipran. Neuropsychopharmacology 21:745–754

    PubMed  CAS  Google Scholar 

  75. Hatanaka K, Yatsugi S, Yamaguchi T (2000) Effect of acute treatment with YM992 on extracellular serotonin levels in the rat frantal cortex. Eur J Pharmacol 395:23–29. doi:10.1016/S0014-2999(00)00174-6

    PubMed  CAS  Google Scholar 

  76. Owens MJ, Nemeroff CB (1994) Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 40:288–295

    PubMed  CAS  Google Scholar 

  77. Åsberg M (1997) Neurotransmitters and suicidal behavior The evidence from cerebrospinal fluid studies. Ann N Y Acad Sci 836:158–181. doi:10.1111/j.1749-6632.1997.tb52359.x

    PubMed  Google Scholar 

  78. Arranz B, Blennow K, Eriksson A et al (1997) Serotonergic, noradrenergic, and dopaminergic measures in suicide brains. Biol Psychiatry 41:1000–1009. doi:10.1016/S0006-3223(96)00239-9

    PubMed  CAS  Google Scholar 

  79. Cheetham SC, Crompton MR, Czudek C et al (1989) Serotonin concentrations and turnover in brains of depressed suicides. Brain Res 502:332–340. doi:10.1016/0006-8993(89)90629-X

    PubMed  CAS  Google Scholar 

  80. Gierris A, Sørensen AS, Rafaelson OJ et al (1987) 5-HT and 5-HIAA in cerebrospinal fluid in depression. J Affect Disord 12:13–22. doi:10.1016/0165-0327(87)90056-5

    Google Scholar 

  81. Boldrini M, Underwood MD, Mann JJ et al (2005) More tryptophan hydroxylase in the brainstem dorsal raphe nucleus in depressed suicides. Brain Res 1041:19–28. doi:10.1016/j.brainres.2005.01.083

    PubMed  CAS  Google Scholar 

  82. Hou C, Jia F, Liu Y et al (2006) CSF serotonin, 5-hydroxyindoleacetic acid and neuropeptide Y levels in severe major depressive disorder. Brain Res 1095:154–158. doi:10.1016/j.brainres.2006.04.026

    PubMed  CAS  Google Scholar 

  83. Lanfumey L, Mongeau R, Cohen-Salmon C et al (2008) Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci Biobehav Rev 32:1174–1184. doi:10.1016/j.neubiorev.2008.04.006

    PubMed  CAS  Google Scholar 

  84. Connor TJ, Song C, Leonard BE et al (1999) Stressor-induced alterations in serotonergic activity in an animal model of depression. Neuroreport 10:523–528. doi:10.1097/00001756-199902250-00015

    PubMed  CAS  Google Scholar 

  85. Jimenez-Genchi A (2006) Immediate switching from moclobemide to duloxetine may induce serotonin syndrome. J Clin Psychiatry 67:1821–1822

    Article  PubMed  Google Scholar 

  86. Gutierrez MA, Stimmel GL, Aiso JY (2003) Venlafaxine: 2003 update. Clin Ther 25:2138–2154. doi:10.1016/S0149-2918(03)80210-2

    PubMed  CAS  Google Scholar 

  87. Bold-Watson C, Richelson E (1993) Blockade by newly-developed antidepressants of biogenic amine uptake into rat brain synaptosomes. Life Sci 52:1023–1029. doi:10.1016/0024-3205(93)90194-8

    Google Scholar 

  88. Heym J, Koe BK (1988) Pharmacology of sertraline: a review. J Clin Psychiatry 49(Suppl):40–45

    PubMed  Google Scholar 

  89. Puozzo C, Leonard BE (1996) Pharmacokinetics of milnacipran in comparison with other antidepressants. Int Clin Psychopharmacol 11:15–27. doi:10.1097/00004850-199609004-00003

    PubMed  Google Scholar 

  90. Cannon DM, Ichise M, Fromm SJ et al (2006) Serotonin transporter binding in bipolar disorder assessed using [11C]DASB and positron emission tomography. Biol Psychiatry 60:207–217. doi:10.1016/j.biopsych.2006.05.005

    PubMed  CAS  Google Scholar 

  91. Naranjo CA, Tremblay LK, Busto UE (2001) The role of the brain reward system in depression. Prog Neuropsychopharmacol Biol Psychiatry 25:781–823. doi:10.1016/S0278-5846(01)00156-7

    PubMed  CAS  Google Scholar 

  92. Oquendo MA, Placidi GPA, Malone KM et al (2003) Positron emission tomography of regional brain metabolic responses to a serotonergic challenge and lethality of suicide attempts in major depression. Arch Gen Psychiatry 60:14–22

    Article  PubMed  Google Scholar 

  93. Dolan RJ, Bench CJ, Liddle PF et al (1993) Dorsolateral prefrontal cortex dysfunction in the major psychosis; symptom or disease specificity? J Neurol Neurosurg Psychiatry 56:1290–1294

    Article  PubMed  CAS  Google Scholar 

  94. Tanaka SC, Kudo K, Ueda K et al (2004) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci 7:887–893. doi:10.1038/nn1279

    PubMed  CAS  Google Scholar 

  95. Uehara T, Sumiyoshi T, Matsuoka T et al (2006) Role of 5-HT(1A) receptors in the modulation of stress-induced lactate metabolism in the medial prefrontal cortex and basolateral amygdala. Psychopharmacology (Berl) 186:218–225. doi:10.1007/s00213-006-0370-y

    CAS  Google Scholar 

  96. Varea E, Blasco-Ibáñez JM, Gómez-Climent MÁ et al (2007) Chronic fluoxetine treatment increases the expression of PSA-NCAM in the medial prefrontal cortex. Neuropsychopharmacology 32:803–812. doi:10.1038/sj.npp.1301183

    PubMed  CAS  Google Scholar 

  97. Duman DS (2004) Depression: a case of neuronal life and death? Biol Psychiatry 56:140–145. doi:10.1016/j.biopsych.2004.02.033

    PubMed  Google Scholar 

  98. Xu H, Chen Z, He J et al (2006) Synergetic effects of quetiapine and venlafaxine in preventing the chronic restraint stress-induced decrease in cell proliferation and BDNF expression in rat hippocampus. Hippocampus 16:551–559. doi:10.1002/hipo.20184

    PubMed  CAS  Google Scholar 

  99. Huang G-J, Herbert J (2006) Stimulation of neurogenesis in the hippocampus of the adult rat by fluoxetine requires rhythmic change in corticosterone. Biol Psychiatry 59:619–624. doi:10.1016/j.biopsych.2005.09.016

    PubMed  CAS  Google Scholar 

  100. Khawaja X, Xu J, Liang JJ et al (2004) Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: implications for depressive disorders and future therapies. J Neurosci Res 75:451–460. doi:10.1002/jnr.10869

    PubMed  CAS  Google Scholar 

  101. Magalas Z, DeVry J, Tzschentke TM (2005) The serotonin/noradrenaline reuptake inhibitor venlafaxine attenuates acquisition, but not maintenance, of intravenous self-administration of heroin in rats. Eur J Pharmacol 528:103–109. doi:10.1016/j.ejphar.2005.10.038

    PubMed  CAS  Google Scholar 

  102. Lu L, Su WJ, Yue W et al (2001) Attenuation of morphine dependence and withdrawal in rats by venlafaxine, a serotonin and noradrenaline reuptake inhibitor. Life Sci 69:37–46. doi:10.1016/S0024-3205(01)01096-7

    PubMed  CAS  Google Scholar 

  103. McDowell DM, Levin FR, Seracini AM et al (2000) Venlafaxine treatment of cocaine abusers with depressive disorders. Am J Drug Alcohol Abuse 26:25–31. doi:10.1081/ADA-100100588

    PubMed  CAS  Google Scholar 

  104. Upadhyaya HP, Brady KT, Sethuraman G et al (2001) Venlafaxine treatment of patients with comorbid alcohol/cocaine abuse and attention-deficit/hyperactivity disorder: a pilot study. J Clin Psychopharmacol 21:116–118. doi:10.1097/00004714-200102000-00025

    PubMed  CAS  Google Scholar 

  105. Linnér L, Endersz H, Ohman D et al (2001) Reboxetine modulates the firing pattern of dopamine cells in the ventral tegmental area and selectively increases dopamine availability in the prefrontal cortex. J Pharmacol Exp Ther 297:540–546

    PubMed  Google Scholar 

  106. Sechter D, Vandel P, Weiller E et al (2004) A comparative study of milnacipran and paroxetine in outpatients with major depression. J Affect Disord 83:233–236. doi:10.1016/j.jad.2004.07.002

    PubMed  CAS  Google Scholar 

  107. Muth EA, Moyer JA, Haskins JT et al (1991) Biochemical, neurophysiological, and behavioral effects of Wy-45,233 and other identified metabolites of the antidepressant venlafaxine. Drug Dev Res 23:191–199. doi:10.1002/ddr.430230210

    CAS  Google Scholar 

  108. Béque J-C, deMontigny C, Blier P et al (1999) Venlafaxine: discrepancy between in vivo 5-HT and NE reuptake blockade and affinity for reuptake sites. Synapse 32:198–211. doi :10.1002/(SICI)1098-2396(19990601)32:3<198::AID-SYN6>3.0.CO;2-2

    Google Scholar 

  109. Rueter LE, Kasamo K, deMontigny C et al (1998) Effect of long-term administration of duloxetine on the function of serotonin and noradrenaline terminals in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 357:600–610. doi:10.1007/PL00005214

    PubMed  CAS  Google Scholar 

  110. Liprando LA, Miner LH, Blakely RD et al (2004) Ultrastructural interactions between terminals expressing the norepinephrine transporter and dopamine neurons in the rat and monkey ventral tegmental area. Synapse 52:233–244. doi:10.1002/syn.20023

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumasa Muneoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muneoka, K., Shirayama, Y., Takigawa, M. et al. Brain Region-Specific Effects of Short-Term Treatment with Duloxetine, Venlafaxine, Milnacipran and Sertraline on Monoamine Metabolism in Rats. Neurochem Res 34, 542–555 (2009). https://doi.org/10.1007/s11064-008-9818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9818-2

Keywords

Navigation