Skip to main content

Advertisement

Log in

Promotion of Lipid and Protein Oxidative Damage in Rat Brain by Ethylmalonic Acid

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

High concentrations of ethylmalonic acid are found in tissues and biological fluids of patients affected by ethylmalonic encephalopathy, deficiency of short-chain acyl-CoA dehydrogenase activity and other illnesses characterized by developmental delay and neuromuscular symptoms. The pathophysiological mechanisms responsible for the brain damage in these patients are virtually unknown. Therefore, in the present work we investigated the in vitro effect of EMA on oxidative stress parameters in rat cerebral cortex. EMA significantly increased chemiluminescence and thiobarbituric acid-reactive species levels (lipoperoxidation), as well as carbonyl content and oxidation of sulfhydryl groups (protein oxidative damage) and DCFH. EMA also significantly decreased the levels of reduced glutathione (non-enzymatic antioxidant defenses). In contrast, nitrate and nitrite levels were not affected by this short organic acid. It is therefore presumed that oxidative stress may represent a pathomechanism involved in the pathophysiology of the neurologic symptoms manifested by patients affected by disorders in which EMA accumulates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burlina A, Zacchello F, Dionisi-Vici C et al (1991) New clinical phenotype of branched-chain acyl-CoA oxidation defect. Lancet 338:1522–1523

    Article  PubMed  Google Scholar 

  2. García-Silva MT, Ribes A, Campos Y, Garavaglia B, Arenas J et al (1997) Syndrome of encephalopathy, petechiae, and ethylmalonic aciduria. Pediatr Neurol 17:165–170

    Article  PubMed  Google Scholar 

  3. Bhala A, Willi SM, Rinaldo P et al (1995) Clinical and biochemical characterization of short-chain acylcoenzyme A dehydrogenase deficiency. J Pediatr 126:910–915

    Article  PubMed  Google Scholar 

  4. Gregersen N, Winter VS, Corydon MJ et al (1998) Identification of four new mutations in the short-chain acyl-CoA dehydrogenase gene in two patients: one of the variant alleles, 511C>T is present at an unexpectedly high frequency in the general population, as was the case for 625G>A, together conferring susceptibility to ethylmalonic aciduria. Hum Mol Gen 7:619–627

    Article  PubMed  Google Scholar 

  5. Nagan N, Kruckeberg KE, Tauscher AL et al (2003) The frequency of short-chain acyl-CoA dehydrogenase gene variants in the US population and correlation with the C4-acylcarnitine concentration in newborn blood spots. Mol Genet Metab 78:239–246

    Article  PubMed  Google Scholar 

  6. Amendt BA, Greene C, Sweetman L et al (1987) Short-chain acyl-coenzyme A dehydrogenase deficiency: clinical and biochemical studies in two patients. J Clin Invest 79:1303–1309

    Article  PubMed  Google Scholar 

  7. van Maldegem BT, Duran M, Wanders RJ et al (2006) Clinical, biochemical, and genetic heterogeneity in short-chain acyl-coenzyme A dehydrogenase deficiency. JAMA 296:943–952

    Article  PubMed  Google Scholar 

  8. Mikati MA, Chaaban HR, Karam PE et al (2007) Brain malformation and infantile spasms in a SCAD deficiency patient. Pediatr Neurol 36:48–50

    Article  PubMed  Google Scholar 

  9. Jethva R, Bennett MJ, Vockley J (2008) Short-chain acyl-coenzyme A dehydrogenase deficiency. Mol Genet Metab 95:195–200

    Article  PubMed  Google Scholar 

  10. Waisbren SE, Levy HL, Noble M et al (2008) Short-chain acyl-CoA dehydrogenase (SCAD) deficiency: an examination of the medical and neurodevelopmental characteristics of 14 cases identified through newborn screening or clinical symptoms. Mol Genet Metab 95:39–45

    Article  PubMed  Google Scholar 

  11. Okuyaz C, Ezgü FS, Biberoglu G et al (2008) Severe infantile hypotonia with ethylmalonic aciduria: case report. J Child Neurol 23:703–705

    Article  PubMed  Google Scholar 

  12. Pedersen CB, Kølvraa S, Kølvraa A et al (2008) The ACADS gene variation spectrum in 114 patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency is dominated by missense variations leading to protein misfolding at the cellular level. Hum Genet 124:43–56

    Article  PubMed  Google Scholar 

  13. Tein I, Elpeleg O, Ben-Zeev B et al (2008) Short-chain acyl-CoA dehydrogenase gene mutation (c.319C>T) presents with clinical heterogeneity and is candidate founder mutation in individuals of Ashkenazi Jewish origin. Mol Genet Metab 93:179–189

    Article  PubMed  Google Scholar 

  14. Duran M, Walther FJ, Bruinvis L et al (1983) The urinary excretion of ethylmalonic acid: what level requires further attention? Biochem Med 29:171–175

    Article  PubMed  Google Scholar 

  15. Schuck PF, Leipnitz G, Ribeiro CA et al (2002) Inhibition of creatine kinase activity in vitro by ethylmalonic acid in cerebral cortex of young rats. Neurochem Res 27:1633–1639

    Article  PubMed  Google Scholar 

  16. Schuck PF, Ferreira GC, Viegas CM, Tonin AM, Busanello EN, Pettenuzzo LF, Netto CA, Wajner M (2009) Chronic early postnatal administration of ethylmalonic acid to rats causes behavioral deficit. Behav Brain Res 197:364–370

    Article  PubMed  Google Scholar 

  17. Leipnitz G, Schuck PF, Ribeiro CA et al (2003) Ethylmalonic acid inhibits mitochondrial creatine kinase activity from cerebral cortex of young rats in vitro. Neurochem Res 28:771–777

    Article  PubMed  Google Scholar 

  18. Barschak AG, Ferreira GC, André KR et al (2006) Inhibition of the electron transport chain and creatine kinase activity by ethylmalonic acid in human skeletal muscle. Metab Brain Dis 21:11–19

    Article  PubMed  Google Scholar 

  19. Evelson P, Travacio M, Repetto M et al (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266

    Article  PubMed  Google Scholar 

  20. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  PubMed  Google Scholar 

  21. Gonzalez-Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10:93–100

    Article  PubMed  Google Scholar 

  22. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  PubMed  Google Scholar 

  23. Aksenov MY, Markesbery WR (2001) Change in thiol content and expression of glutathione redox system gene in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  PubMed  Google Scholar 

  24. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    PubMed  Google Scholar 

  25. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′, 7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  PubMed  Google Scholar 

  26. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 1:62–71

    Article  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  28. Burlina AB, Dionisi-Vici C, Bennett MJ et al (1994) A new syndrome with ethylmalonic aciduria and normal fatty acid oxidation in fibroblasts. J Pediatr 124:79–86

    Article  PubMed  Google Scholar 

  29. García-Silva MT, Campos Y, Ribes A et al (1994) Encephalopathy, petechiae, and acrocyanosis with ethylmalonic aciduria associated with muscle cytochrome c oxidase deficiency. J Pediatr 125:843–844

    PubMed  Google Scholar 

  30. Ozand PT, Rashed M, Millington DS et al (1994) Ethylmalonic aciduria: an organic acidemia with CNS involvement and vasculopathy. Brain Dev 16:12–22

    Article  PubMed  Google Scholar 

  31. Rinaldo P, Raymond K, Al-Odaib A, Bennett MJ et al (1998) Clinical and biochemical features of fatty acid oxidation disorders. Curr Opin Pediatr 10:615–621

    Article  PubMed  Google Scholar 

  32. Roe CR, Ding J (2001) Mitochondrial fatty acid oxidation disorders. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1909–1963

    Google Scholar 

  33. Merinero B, Pérez-Cerdá C, Ruiz Sala P et al (2006) Persistent increase of plasma butyryl/isobutyrylcarnitine concentrations as marker of SCAD defect and ethylmalonic encephalopathy. J Inherit Metab Dis 29:685

    Article  PubMed  Google Scholar 

  34. Gregersen N, Andresen BS, Pedersen CB et al (2008) Mitochondrial fatty acid oxidation defects—remaining challenges. J Inherit Metab Dis 31:643–657

    Article  PubMed  Google Scholar 

  35. Perez-Severiano F, Rios C, Segovia J (2000) Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington’s disease. Brain Res 862:234–237

    Article  PubMed  Google Scholar 

  36. Bogdanov MB, Andreassen OA, Dedeoglu A et al (2001) Increased oxidative damage to DNA in a transgenic mouse of Huntington’s disease. J Neurochem 79:1246–1249

    Article  PubMed  Google Scholar 

  37. Behl C, Moosmann B (2002) Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 383:521–536

    Article  PubMed  Google Scholar 

  38. Stoy N, Mackay GM, Forrest CM et al (2005) Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem 93:611–623

    Article  PubMed  Google Scholar 

  39. Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17:5–17

    Article  PubMed  Google Scholar 

  40. Mancuso M, Coppede F, Migliore L et al (2006) Mitochondrial dysfunction, oxidative stress and neurodegeneration. J Alzheimers Dis 10:59–73

    PubMed  Google Scholar 

  41. Streck EL, Zugno AI, Tagliari B et al (2001) Inhibition of rat brain Na+, K+-ATPase activity induced by homocysteine is probably mediated by oxidative stress. Neurochem Res 26:1195–1200

    Article  PubMed  Google Scholar 

  42. Fontella FU, Gassen E, Pulrolnik V et al (2002) Stimulation of lipid peroxidation in vitro in rat brain by the metabolites accumulating in maple syrup urine disease. Metab Brain Dis 17:47–54

    Article  PubMed  Google Scholar 

  43. Latini A, Scussiato K, Rosa RB et al (2003) Induction of oxidative stress by l-2-hydroxyglutaric acid in rat brain. J Neurosci Res 74:103–110

    Article  PubMed  Google Scholar 

  44. Latini A, Scussiato K, Leipnitz G et al (2005) Promotion of oxidative stress by 3-hydroxyglutaric acid in rat striatum. J Inherit Metab Dis 28:57–67

    Article  PubMed  Google Scholar 

  45. de Oliveira Marques F, Hagen ME, Pederzolli CD et al (2003) Glutaric acid induces oxidative stress in brain of young rats. Brain Res 964:153–158

    Article  PubMed  Google Scholar 

  46. Wajner M, Latini A, Wyse AT et al (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448

    Article  PubMed  Google Scholar 

  47. Barschak AG, Sitta A, Deon M et al (2006) Evidence that oxidative stress is increased in plasma from patients with maple syrup urine disease. Metab Brain Dis 21:279–286

    Article  PubMed  Google Scholar 

  48. Schuck PF, Ceolato PC, Ferreira GC et al (2007) Oxidative stress induction by cis-4-decenoic acid: relevance for MCAD deficiency. Free Radic Res 41:1261–1272

    Article  PubMed  Google Scholar 

  49. Schuck PF, Ferreira GC, Moura AP et al (2009) Medium-chain fatty acids accumulating in MCAD deficiency elicit lipid and protein oxidative damage and decrease non-enzymatic antioxidant defenses in rat brain. Neurochem Int 54:519–525

    Article  PubMed  Google Scholar 

  50. Sgaravatti AM, Sgarbi MB, Testa CG et al (2007) γ-Hydroxybutyric acid induces oxidative stress in cerebral cortex of young rats. Neurochem Int 50:564–570

    Article  PubMed  Google Scholar 

  51. Halliwell B, Gutteridge JMC (1999) Detection of free radicals and others reactive species: trapping and fingerprinting. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 351–425

    Google Scholar 

  52. Halliwell B, Gutteridge JMC (2007) Ageing, nutrition, disease and therapy: a role for antioxidants? In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 614–677

    Google Scholar 

  53. Maharaj DS, Glass BD, Daya S (2007) Melatonin: new places in therapy. Biosci Rep 27:299–320

    Article  PubMed  Google Scholar 

  54. Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796

    Article  PubMed  Google Scholar 

  55. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  PubMed  Google Scholar 

  56. Zolkipli Z, Lehotay DC, Robinson BH et al (2008) Lipid peroxidative stress in SCAD deficiency (SCADD) and response to antioxidants. J Inherit Metab Dis 31(1):37

    Google Scholar 

  57. Reichmann H, Maltese WA, DeVivo DC (1988) Enzyme of fatty acid β-oxidation in developing brain. J Neurochem 51:339–344

    Article  PubMed  Google Scholar 

  58. Kölker S, Sauer SW, Surtees RA et al (2006) The aetiology of neurological complications of organic acidaemias—a role for the blood–brain barrier. J Inherit Metab Dis 29:701–704

    Article  PubMed  Google Scholar 

  59. Wood PA, Amendt BA, Rhead WJ et al (1989) Short-chain acyl-coenzyme A dehydrogenase deficiency in mice. Pediatr Res 25:38–43

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CNPq, PRONEX II, FAPERGS, PROPESQ/UFRGS, and FINEP research grant Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00, Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção (INCT-EM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuck, P.F., Busanello, E.N.B., Moura, A.P. et al. Promotion of Lipid and Protein Oxidative Damage in Rat Brain by Ethylmalonic Acid. Neurochem Res 35, 298–305 (2010). https://doi.org/10.1007/s11064-009-0055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0055-0

Keywords

Navigation