Skip to main content

Advertisement

Log in

Evidence Group I mGluR Drugs Modulate the Activation Profile of Lipopolysaccharide-Exposed Microglia in Culture

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Metabotropic glutamate receptors (mGluRs) may play a role in modulating microglial activation, but group I mGluRs have received little attention. This study aimed to investigate the effects of group I mGluR selective ligands, (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG) and (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), in lipopolysaccharide (LPS; 50 ng/ml)-activated rat microglial cultures. (S)-3,5-DHPG (150 μM) significantly reduced (approximately 20–60%) the LPS-mediated production of nitrite (NO2 ), tumour necrosis factor alpha (TNF-α), and l-glutamate (Glu) at 24 and 72 h. Image analysis revealed increases in both cell area and number, with larger amoeboid microglia (with retracted processes) formed following 2 h LPS exposure. This cellular population was absent after addition of (S)-3,5-DHPG, an effect antagonised by AIDA, and a concomitant reduction in cell area was also found. Taken together, these biochemical and morphological observations suggest that (S)-3,5-DHPG reduces microglial activation, indicating a role for group I mGluRs in modulating microglial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. doi:10.1038/nn1997

    Article  PubMed  CAS  Google Scholar 

  2. Schwab C, McGeer PL (2008) Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimers Dis 13:359–369

    PubMed  CAS  Google Scholar 

  3. Garden GA, Moller T (2006) Microglia biology in health and disease. J Neuroimmune Pharmacol 1:127–137. doi:10.1007/s11481-006-9015-5

    Article  PubMed  Google Scholar 

  4. Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535. doi:10.1016/j.tins.2007.07.007

    Article  PubMed  CAS  Google Scholar 

  5. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69. doi:10.1038/nrn2038

    Article  PubMed  CAS  Google Scholar 

  6. Matute CM, Domercq M, Sanchez-Gomez MV (2006) Glutamate-mediated glial injury: mechanisms and clinical importance. Glia 53:212–224. doi:10.1002/glia.20275

    Article  PubMed  Google Scholar 

  7. Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 299:12–20

    PubMed  CAS  Google Scholar 

  8. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237. doi:10.1146/annurev.pharmtox.37.1.205

    Article  PubMed  CAS  Google Scholar 

  9. Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75:889–907. doi:10.1046/j.1471-4159.2000.0750889.x

    Article  PubMed  CAS  Google Scholar 

  10. D’Antoni S, Berretta A, Bonaccorso CM et al (2008) Metabotropic glutamate receptors in glial cells. Neurochem Res 33:2436–2443. doi:10.1007/s11064-008-9694-9

    Article  PubMed  CAS  Google Scholar 

  11. Verkhratsky A, Kirchhoff F (2007) Glutamate-mediated neuronal-glial transmission. J Anat 210:651–660. doi:10.1111/j.1469-7580.2007.00734.x

    Article  PubMed  CAS  Google Scholar 

  12. Byrnes KR, Stoica B, Loane DJ et al (2009) Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia 57:550–560. doi:10.1002/glia.20783

    Article  PubMed  Google Scholar 

  13. Taylor DL, Diemel LT, Cuzner ML et al (2002) Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer’s disease. J Neurochem 82:1179–1191. doi:10.1046/j.1471-4159.2002.01062.x

    Article  PubMed  CAS  Google Scholar 

  14. Taylor DL, Diemel LT, Pocock JM (2003) Activation of group III metabotropic glutamate receptors protects neurones against microglial neurotoxicity. J Neurosci 23:2150–2160

    PubMed  CAS  Google Scholar 

  15. Biber K, Laurie DJ, Berthele A et al (1999) Expression and signalling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem 72:1671–1680. doi:10.1046/j.1471-4159.1999.721671.x

    Article  PubMed  CAS  Google Scholar 

  16. Geurts JJ, Wolswijk G, Bo L et al (2003) Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain 126:1755–1766. doi:10.1093/brain/awg179

    Article  PubMed  CAS  Google Scholar 

  17. Schoepp DD, Goldsworthy J, Johnson BG et al (1994) 3-5-dihydroxyphenylglycine is a highly selective agonist for phosphoinositide-linked metabotropic glutamate receptors in the rat hippocampus. J Neurochem 63:769–772

    Article  PubMed  CAS  Google Scholar 

  18. Farso MC, O’Shea RD, Jarrott B et al (2008) Group I mGluRs reduce the activation profile of lipopolysaccharide-exposed microglial cultures. Neuropharmacology 55:595

    Google Scholar 

  19. O’Shea RD, Lau CL, Farso MC et al (2006) Effects of lipopolysaccharide on glial phenotype and activity of glutamate transporters: evidence for delayed up-regulation and redistribution of GLT-1. Neurochem Int 48:604–610

    PubMed  Google Scholar 

  20. Ankarcrona M, Dypbukt JM, Bonfoco E et al (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973. doi:10.1016/0896-6273(95)90186-8

    Article  PubMed  CAS  Google Scholar 

  21. Kong LY, Wilson BC, McMillian MK et al (1996) The effects of HIV-1 envelope protein gp120 on the production of nitric oxide and proinflammatory cytokines in mixed glial cell cultures. Cell Immunol 172:77–83. doi:10.1006/cimm.1996.0217

    Article  PubMed  CAS  Google Scholar 

  22. Ong WY, Balcar VJ (1997) Group I metabotropic glutamate receptor agonist causes neurodegeneration in rat hippocampus. J Hirnforsch 38:317–322

    PubMed  CAS  Google Scholar 

  23. Rock RB, Peterson PK (2006) Microglia as a pharmacological target in infectious and inflammatory diseases of the brain. J Neuroimmune Pharmacol 1:117–126. doi:10.1007/s11481-006-9012-8

    Article  PubMed  Google Scholar 

  24. Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155. doi:10.1002/glia.10161

    Article  PubMed  Google Scholar 

  25. Bezzi P, Domercq M, Brambilla L et al (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710. doi:10.1038/89490

    Article  PubMed  CAS  Google Scholar 

  26. Chao CC, Hu S, Molitor TW et al (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736–2741

    PubMed  CAS  Google Scholar 

  27. Eskes C, Juillerat-Jeanneret L, Leuba G et al (2003) Involvement of microglia-neuron interactions in the tumor necrosis factor-alpha release, microglial activation, and neurodegeneration induced by trimethyltin. J Neurosci Res 71:583–590. doi:10.1002/jnr.10508

    Article  PubMed  CAS  Google Scholar 

  28. Gibbons HM, Dragunow M (2006) Microglia induce neural cell death via a proximity-dependent mechanism involving nitric oxide. Brain Res 1084:1–15. doi:10.1016/j.brainres.2006.02.032

    Article  PubMed  CAS  Google Scholar 

  29. Piani D, Frei K, Do KQ (1991) Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci Lett 133:159–162. doi:10.1016/0304-3940(91)90559-C

    Article  PubMed  CAS  Google Scholar 

  30. Piani D, Spranger M, Frei K (1992) Macrophage-induced cytotoxicity of N-methyl-d-aspartate receptor positive neurons involves excitatory amino acids rather than reactive oxygen intermediates and cytokines. Eur J Immunol 22:2429–2436. doi:10.1002/eji.1830220936

    Article  PubMed  CAS  Google Scholar 

  31. Abd-el-Basset E, Fedoroff S (1995) Effect of bacterial wall lipopolysaccharide (LPS) on morphology, motility, and cytoskeletal organization of microglia in cultures. J Neurosci Res 41:222–237. doi:10.1002/jnr.490410210

    Article  PubMed  CAS  Google Scholar 

  32. Attucci S, Clodfelter GV, Thibault O et al (2002) Group I metabotropic glutamate receptor inhibition selectively blocks a prolonged Ca2+ elevation associated with age-dependent excitotoxicity. Neuroscience 112:183–194. doi:10.1016/S0306-4522(02)00002-7

    Article  PubMed  CAS  Google Scholar 

  33. Strasser U, Lobner D, Behrens MM et al (1998) Antagonists for group I mGluRs attenuate excitotoxic neuronal death in cortical cultures. Eur J NeuroSci 10:2848–2855. doi:10.1111/j.1460-9568.1998.00291.x

    Article  PubMed  CAS  Google Scholar 

  34. Jiang-Shieh YF, Yeh KY, Wei IH (2005) Responses of microglia in vitro to the gram-positive bacterial component, lipoteichoic acid. J Neurosci Res 82:515–524. doi:10.1002/jnr.20663

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by a Program Grant from the NH&MRC (Australia) of which PMB is a Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Farso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farso, M.C., O’Shea, R.D. & Beart, P.M. Evidence Group I mGluR Drugs Modulate the Activation Profile of Lipopolysaccharide-Exposed Microglia in Culture. Neurochem Res 34, 1721–1728 (2009). https://doi.org/10.1007/s11064-009-9999-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9999-3

Keywords

Navigation