Skip to main content
Log in

Protective Effects of Flavonoids Against Oxidative Stress Induced by Simulated Microgravity in SH-SY5Y Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Many lines of evidence suggest that microgravity results in increased oxidative stress in the nervous system. In order to protect neuronal cells from oxidative damage induced by microgravity, we selected some flavonoids that might prevent oxidative stress because of their antioxidant activities. Among the 20 flavonoids we examined, we found that isorhamnetin and luteolin had the best protective effects against H2O2 or SIN-1-induced cytotoxicity in SH-SY5Y cells. Using a clinostat to simulate microgravity, we found that isorhamnetin and luteolin treatment protected SH-SY5Y cells by preventing microgravity-induced increases in reactive oxygen species (ROS), nitric oxide (NO) and 3-nitrotyrosine (3-NT) levels, and a decrease in antioxidant power (AP). Moreover, isorhamnetin and luteolin treatment downregulated the expression of inducible nitric oxide synthase (iNOS), and oxidative stress was significantly inhibited by an iNOS inhibitor in SH-SY5Y cells exposed to simulated microgravity (SMG). These results indicate that isorhamnetin and luteolin could protect against microgravity-induced oxidative stress in neuroblastoma SH-SY5Y cells by inhibiting the ROS-NO pathway. These two flavonoids may have potential for preventing oxidative stress induced by space flight or microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maillet A, Beaufrere B, Di Nardo P et al (2001) Weightlessness as an accelerated model of nutritional disturbances. Curr Opin Clin Nutr Metab Care 4:301–306

    Article  CAS  PubMed  Google Scholar 

  2. Stein TP (2002) Space flight and oxidative stress. Nutrition 18:867–871

    Article  CAS  PubMed  Google Scholar 

  3. Hollander J, Gore M, Fiebig R et al (1998) Spaceflight downregulates antioxidant defense systems in rat liver. Free Radic Biol Med 24:385–390

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y, Wang E (2008) Transcriptional analysis of normal human fibroblast responses to microgravity stress. Genomics Proteomics Bioinformatics 6:29–41

    Article  CAS  PubMed  Google Scholar 

  5. Chowdhury P, Soulsby M (2002) Lipid peroxidation in rat brain is increased by simulated weightlessness and decreased by a soy-protein diet. Ann Clin Lab Sci 32:188–192

    CAS  PubMed  Google Scholar 

  6. Soulsby ME, Phillips B, Chowdhury P (2004) Brief communication: effects of soy-protein diet on elevated brain lipid peroxide levels induced by simulated weightlessness. Ann Clin Lab Sci 34:103–106

    CAS  PubMed  Google Scholar 

  7. Sarkar P, Sarkar S, Ramesh V et al (2008) Proteomic analysis of mouse hypothalamus under simulated microgravity. Neurochem Res 33:2335–2341

    Article  CAS  PubMed  Google Scholar 

  8. Wise KC, Manna SK, Yamauchi K et al (2005) Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment. In Vitro Cell Dev Biol Anim 41:118–123

    Article  CAS  PubMed  Google Scholar 

  9. Wang SS, Good TA (2001) Effect of culture in a rotating wall bioreactor on the physiology of differentiated neuron-like PC12 and SH-SY5Y cells. J Cell Biochem 83:574–584

    Article  CAS  PubMed  Google Scholar 

  10. Qu L, Yang T, Yuan Y et al (2006) Protein nitration increased by simulated weightlessness and decreased by melatonin and quercetin in PC12 cells. Nitric Oxide 15:58–63

    Article  PubMed  Google Scholar 

  11. Wang J, Zhang J, Bai S et al (2009) Stimulated microgravity promotes cellular senescence via oxidant stress in rat PC12 cells. Neurochem Int 55:710–716

    Article  CAS  PubMed  Google Scholar 

  12. Kwon O, Sartor M, Tomlinson CR et al (2006) Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells. Adv Space Res 38:1168–1176

    Article  PubMed  Google Scholar 

  13. Chowdhury P, Soulsby M, Kim K (2007) l-carnitine influence on oxidative stress induced by hind limb unloading in adult rats. Aviat Space Environ Med 78:554–556

    CAS  PubMed  Google Scholar 

  14. Bonfili L, Cecarini V, Amici M et al (2008) Natural polyphenols as proteasome modulators and their role as anti-cancer compounds. Febs J 275:5512–5526

    CAS  PubMed  Google Scholar 

  15. Le Marchand L (2002) Cancer preventive effects of flavonoids–a review. Biomed Pharmacother 56:296–301

    Article  CAS  PubMed  Google Scholar 

  16. Songlin P, Ge Z, Yixin H et al (2009) Epimedium-derived flavonoids promote osteoblastogenesis and suppress adipogenesis in bone marrow stromal cells while exerting an anabolic effect on osteoporotic bone. Bone 45:534–544

    Article  PubMed  Google Scholar 

  17. Meotti FC, Senthilmohan R, Harwood DT et al (2008) Myricitrin as a substrate and inhibitor of myeloperoxidase: implications for the pharmacological effects of flavonoids. Free Radic Biol Med 44:109–120

    Article  CAS  PubMed  Google Scholar 

  18. Auclair S, Milenkovic D, Besson C et al (2009) Catechin reduces atherosclerotic lesion development in apo E-deficient mice: a transcriptomic study. Atherosclerosis 204:e21–e27

    Article  CAS  PubMed  Google Scholar 

  19. Sawa T, Nakao M, Akaike T et al (1999) Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor-promoter effect of vegetables. J Agric Food Chem 47:397–402

    Article  CAS  PubMed  Google Scholar 

  20. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    Article  CAS  PubMed  Google Scholar 

  21. Bass DA, Parce JW, Dechatelet LR et al (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130:1910–1917

    CAS  PubMed  Google Scholar 

  22. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  23. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  24. Qu LN, Yang TB, Yuan YH et al (2003) A novel competitive ELISA for both free and protein-bound nitrotyrosine. Hybrid Hybridomics 22:401–406

    Article  PubMed  Google Scholar 

  25. Lee HJ, Lee HJ, Lee EO et al (2008) Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis. Cancer Lett 270:342–353

    Article  CAS  PubMed  Google Scholar 

  26. Hamalainen M, Nieminen R, Vuorela P, et al (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007:45673

    Article  PubMed  Google Scholar 

  27. Bao M, Lou Y (2006) Isorhamnetin prevent endothelial cell injuries from oxidized LDL via activation of p38MAPK. Eur J Pharmacol 547:22–30

    Article  CAS  PubMed  Google Scholar 

  28. Lee J, Jung E, Lee J et al (2009) Isorhamnetin represses adipogenesis in 3T3–L1 Cells. Obesity (Silver Spring) 17:226–232

    CAS  Google Scholar 

  29. Cornish KM, Williamson G, Sanderson J (2002) Quercetin metabolism in the lens: role in inhibition of hydrogen peroxide induced cataract. Free Radic Biol Med 33:63–70

    Article  CAS  PubMed  Google Scholar 

  30. Hwang SL, Yen GC (2009) Modulation of Akt, JNK, and p38 activation is involved in citrus flavonoid-mediated cytoprotection of PC12 cells challenged by hydrogen peroxide. J Agric Food Chem 57:2576–2582

    Article  CAS  PubMed  Google Scholar 

  31. Seelinger G, Merfort I, Schempp CM (2008) Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med 74:1667–1677

    Article  CAS  PubMed  Google Scholar 

  32. Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med 22:885–888

    Article  CAS  PubMed  Google Scholar 

  33. Feelisch M (1998) The use of nitric oxide donors in pharmacological studies. Naunyn Schmiedebergs Arch Pharmacol 358:113–122

    Article  CAS  PubMed  Google Scholar 

  34. Meij JT, Haselton CL, Hillman KL et al (2004) Differential mechanisms of nitric oxide- and peroxynitrite-induced cell death. Mol Pharmacol 66:1043–1053

    Article  CAS  PubMed  Google Scholar 

  35. Fujii MD, Patten BM (1992) Neurology of microgravity and space travel. Neurol Clin 10:999–1013

    CAS  PubMed  Google Scholar 

  36. Sun XQ, Xu ZP, Zhang S et al (2009) Simulated weightlessness aggravates hypergravity-induced impairment of learning and memory and neuronal apoptosis in rats. Behav Brain Res 199:197–202

    Article  PubMed  Google Scholar 

  37. Chen HL, Qu LN, Li QD et al (2009) Simulated microgravity-induced oxidative stress in different areas of rat brain. Sheng Li Xue Bao 61:108–114

    CAS  PubMed  Google Scholar 

  38. Vasquez-Vivar J, Whitsett J, Ionova I et al (2008) Cytokines and lipopolysaccharides induce inducible nitric oxide synthase but not enzyme activity in adult rat cardiomyocytes. Free Radic Biol Med 45:994–1001

    Article  CAS  PubMed  Google Scholar 

  39. Stadler K, Bonini MG, Dallas S et al (2008) Involvement of inducible nitric oxide synthase in hydroxyl radical-mediated lipid peroxidation in streptozotocin-induced diabetes. Free Radic Biol Med 45:866–874

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Edward Sharman at the University of California at Irvine for his critical and careful reading and editing of the manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 30600759 and 30973686) and China Manned Space Advanced Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zebin Mao or Yinghui Li.

Additional information

Lina Qu and Hailong Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, L., Chen, H., Liu, X. et al. Protective Effects of Flavonoids Against Oxidative Stress Induced by Simulated Microgravity in SH-SY5Y Cells. Neurochem Res 35, 1445–1454 (2010). https://doi.org/10.1007/s11064-010-0205-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0205-4

Keywords

Navigation