Skip to main content
Log in

A Novel Hypothesis About Mechanisms Affecting Conduction Velocity of Central Myelinated Fibers

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The hypothesis that gap junctions are implicated in facilitating axonal conduction has not yet been experimentally demonstrated at the electrophysiological level. We found that block of gap junctions with oleammide slows down axonal conduction velocity in the hippocampal Schaffer collaterals, a central myelinated pathway. Moreover, we explored the possibility that support by the oligodendrocyte to the axon involves energy metabolism, a hypothesis that has been recently proposed by some of us. In agreement with this hypothesis, we found that the effect of oleammide was reversed by pretreatment with creatine, a compound that is known to increase the energy charge of the tissue. Moreover, conduction velocity was also slowed down by anoxia, a treatment that obviously decreases the energy charge of the tissue, and by ouabain, a compound that blocks plasma membrane Na/K-ATPase, the main user of ATP in the brain. We hypothesize that block of gap junctions slows down conduction velocity in central myelinated pathways because oligodendrocytes synthesize ATP and transfer it to the axon through gap junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aiello GL, Rita P (2000) The cost of an action potential. J Neurosci Methods 103:145–149

    Article  PubMed  CAS  Google Scholar 

  2. Alvarez-Maubecin V, Garcia-Hernandez F, Williams JT, Van Bockstaele EJ (2000) Functional coupling between neurons and glia. J Neurosci 20:4091–4098

    PubMed  CAS  Google Scholar 

  3. Balestrino M, Aitken PG, Somjen GG (1986) The effects of moderate changes of extracellular K+ and Ca2+on synaptic and neural function in the CA1 region of the hippocampal slice. Brain Res 377:229–239

    Article  PubMed  CAS  Google Scholar 

  4. Balestrino M, Rebaudo R, Lunardi G (1999) Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: dose-effect relationship. Brain Res 816:124–130

    Article  PubMed  CAS  Google Scholar 

  5. Balestrino M, Young J, Aitken P (1999) Block of (Na+, K+)ATPase with ouabain induces spreading depression-like depolarization in hippocampal slices. Brain Res 838:37–44

    Article  PubMed  CAS  Google Scholar 

  6. Edgar JM, Nave KA (2009) The role of CNS glia in preserving axon function. Curr Opin Neurobiol 19:498–504

    Article  PubMed  CAS  Google Scholar 

  7. Goldberg GS, Moreno AP, Lampe PD (2002) Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J Biol Chem 277:36725–36730

    Article  PubMed  CAS  Google Scholar 

  8. Guan X, Cravatt BF, Ehring GR, Hall JE, Boger DL, Lerner RA, Gilula NB (1997) The sleep-inducing lipid oleamide deconvolutes gap junction communication and calcium wave transmission in glial cells. J Cell Biol 139:1785–1792

    Article  PubMed  CAS  Google Scholar 

  9. Hargittai PT, Lieberman EM (1991) Axon-glia interactions in the crayfish: glial cell oxygen consumption is tightly coupled to axon metabolism. Glia 4:417–423

    Article  PubMed  CAS  Google Scholar 

  10. Juszczak GR, Swiergiel AH (2009) Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog NeuroPsychopharmacol Biol Psychiatry 33:181–198

    Article  PubMed  CAS  Google Scholar 

  11. Kobayashi S, Takeno K, Miyazaki T, Kubota M, Shimada S, Yayama T, Uchida K, Normura E, Mwaka E, Baba H (2008) Effects of arterial ischemia and venous congestion on the lumbar nerve root in dogs. J Orthop Res 26:1533–1540

    Article  PubMed  Google Scholar 

  12. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  13. Lipton P, Whittingham TS (1982) Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus. J Physiol 325:51–65

    PubMed  CAS  Google Scholar 

  14. Lowry OH, Passonneau JV, Hasselberger H, Schulz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239:18–30

    PubMed  CAS  Google Scholar 

  15. Meier S, Brauer AU, Heimrich B, Nitsch R, Savaskan NE (2004) Myelination in the hippocampus during development and following lesion. Cell Mol Life Sci 61:1082–1094

    Article  PubMed  CAS  Google Scholar 

  16. Morelli A, Ravera S, Panfoli I (2011) Hypothesis of an energetic function for myelin. Cell Biochem Biophys. doi:10.1007/s12013-011-9174-8

  17. Nadarajah B, Jones AM, Evans WH, Parnavelas JG (1997) Differential expression of connexins during neocortical development and neuronal circuit formation. J Neurosci 17:3096–3111

    PubMed  CAS  Google Scholar 

  18. Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Research Rev 47:191–215

    Article  CAS  Google Scholar 

  19. Pellerin L (2009) Lactate as a pivotal element in neuron-glia metabolic cooperation. Neurochem Int 43:331–338

    Article  Google Scholar 

  20. Perasso L, Lunardi G, Risso F, Pohvozcheva A, Leko M, Gandolfo C, Florio T, Cupello A, Burov S, Balestrino M (2008) Protective effects of some creatine derivatives in brain tissue anoxia. Neurochem Res 33:765–775

    Article  PubMed  CAS  Google Scholar 

  21. Rash JE (2010) Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system. Neuroscience 168:982–1008

    Article  PubMed  CAS  Google Scholar 

  22. Ravera S, Panfoli I, Aluigi M, Calzia D, Morelli A (2010) Characterization of myelin sheath FoF1-ATP synthase and its regulation by IF(1). Cell Biochem Biophys 59(2):63–70

    Google Scholar 

  23. Ravera S, Panfoli I, Calzia D, Aluigi MG, Bianchini P, Diaspro A, Mancardi G, Morelli A (2009) Evidence for aerobic ATP synthesis in isolated myelin vesicles. Int J Biochem Cell Biol 41:1581–1591

    Article  PubMed  CAS  Google Scholar 

  24. Shioyama M, Kihara M, Takahashi M (2002) Ischemic neurophysiological changes of rat sciatic nerve in vitro. Pathophysiology 9:7–11

    Article  PubMed  CAS  Google Scholar 

  25. Snow RJ, Murphy RM (2001) Creatine and the creatine transporter: a review. Mol Cell Biochem 224:169–181

    Article  PubMed  CAS  Google Scholar 

  26. Somjen GG, Schiff S., Aitken PG., Balestrino M. (1987) Forms of suppression of neuronal function: leao’s depression, hypoxia and hyperthermia. In: Chalazonitis N., Gola M. (eds.) [Inactivation of hypersensitive neurons.], New York, Alan Liss, pp. 137–145 (Ref Type: Serial (Book,Monograph)

  27. Suadicani SO, Cherkas PS, Zuckerman J, Smith DN, Spray DC, Hanani M (2009) Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. Neuron Glia Biol 6(1):43–51

    Google Scholar 

  28. Waxman SG, Bangalore L (2005) Myelin function and saltatory conduction. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 273–284

    Google Scholar 

  29. Whittingham TS, Lipton P (1981) Cerebral synaptic transmission during anoxia is protected by creatine. J Neurochem 37:1618–1621

    Article  PubMed  CAS  Google Scholar 

  30. Yamazaki Y, Hozumi Y, Kaneko K, Fujii S, Goto K, Kato H (2010) Oligodendrocytes: facilitating axonal conduction by more than myelination. Neuroscientist 16:11–18

    Article  PubMed  Google Scholar 

  31. Yoneda K, Arakawa T, Asaoka Y, Fukuoka Y, Kinugasa K, Takimoto K, Okada Y (1983) Effects of accumulation of phosphocreatine on utilization and restoration of high-energy phosphates during anoxia and recovery in thin hippocampal slices from the guinea pig. Exp Neurol 82:215–222

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from the ‘‘Compagnia di San Paolo’’- Neuroscience Program, for the research project entitled: ‘‘Energetic metabolism in myelinated axon: a new trophic role of myelin sheath’’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Balestrino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adriano, E., Perasso, L., Panfoli, I. et al. A Novel Hypothesis About Mechanisms Affecting Conduction Velocity of Central Myelinated Fibers. Neurochem Res 36, 1732–1739 (2011). https://doi.org/10.1007/s11064-011-0488-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0488-0

Keywords

Navigation