Skip to main content
Log in

Age- and Sex-Related Characteristics of Tonic Gaba Currents in the Rat Substantia Nigra Pars Reticulata

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Previous studies have shown that the pharmacologic effects of GABAergic drugs and the postsynaptic phasic GABAAergic inhibitory responses in the anterior part of the rat substantia nigra pars reticulata (SNRA) are age- and sex-specific. Here, we investigate whether there are age- and sex-related differences in the expression of the δ GABAA receptor (GABAAR) subunit and GABAAR mediated tonic currents. We have used δ-specific immunochemistry and whole cell patch clamp to study GABAAR mediated tonic currents in the SNRA of male and female postnatal day (PN) PN5-9, PN11-16, and PN25-32 rats. We observed age-related decline, but no sex-specific changes, in bicuculline (BIM) sensitive GABAAR tonic current density, which correlated with the decline in δ subunit in the SNRA between PN15 and 30. Furthermore, we show that the GABAAR tonic currents can be modified by muscimol (GABAAR agonist; partial GABACR agonist), THIP (4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3-ol: α4β3δ GABAARs agonist and GABACR antagonist), and zolpidem (α1-subunit selective GABAAR agonist) in age- and sex-dependent manner specific for each drug. We propose that the emergence of the GABAAR-sensitive anticonvulsant effects of the rat SNRA during development may depend upon the developmental decline in tonic GABAergic inhibition of the activity of rat SNRA neurons, although other sex-specific factors are also involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SNR:

Substantia nigra pars reticulata

SNRA :

Anterior part of the substantia nigra pars reticulata

sIPSCs:

Spontaneous inhibitory postsynaptic currents

PN:

Postnatal days

-ir:

Immunoreactivity

GABAARs:

GABAA receptors

GABACRs:

GABAC receptors

aCSF:

Artificial cerebrospinal fluid

D-AP5:

d-(-)-2-Amino-5-phosphonopentanoic acid

CNQX:

6-Cyano-2,3-dihydroxy-7-nitro-quinoxaline

BIM:

Bicuculline methobromide

DMSO:

Dimethyl sulfoxide

TBS:

Tris based saline

THIP:

4,5,6,7-Tetrahydroisoxazolo (5,4-c)pyridin-3-ol

TTX:

Tetrodotoxin

gabazine:

SR 95531 hydrobromide

RT:

Room temperature

NGS:

Normal goat serum

SE:

Standard error

Rs:

Series resistance

References

  1. Iadarola MJ, Gale K (1982) Substantia nigra: site of anticonvulsant activity mediated by gamma-aminobutyric acid. Science 218(4578):1237–1240

    Article  CAS  PubMed  Google Scholar 

  2. Moshe SL, Albala BJ (1984) Nigral muscimol infusions facilitate the development of seizures in immature rats. Brain Res 315(2):305–308

    Article  CAS  PubMed  Google Scholar 

  3. Gale K (1985) Mechanisms of seizure control mediated by gamma-aminobutyric acid: role of the substantia nigra. Fed Proc 44(8):2414–2424

    CAS  PubMed  Google Scholar 

  4. Veliskova J, Moshe SL (2006) Update on the role of substantia nigra pars reticulata in the regulation of seizures. Epilepsy Curr 6(3):83–87

    Article  PubMed Central  PubMed  Google Scholar 

  5. Deransart C, Vercueil L, Marescaux C, Depaulis A (1998) The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res 32(1–2):213–223

    Article  CAS  PubMed  Google Scholar 

  6. Garant DS, Xu SG, Sperber EF, Moshe SL (1995) Age-related differences in the effects of GABAA agonists microinjected into rat substantia nigra: pro- and anticonvulsant actions. Epilepsia 36(10):960–965

    Article  CAS  PubMed  Google Scholar 

  7. Veliskova J, Moshe SL (2001) Sexual dimorphism and developmental regulation of substantia nigra function. Ann Neurol 50(5):596–601

    Article  CAS  PubMed  Google Scholar 

  8. Chudomel O, Herman H, Nair K, Moshe SL, Galanopoulou AS (2009) Age- and gender-related differences in GABA(A) receptor-mediated postsynaptic currents in GABAergic neurons of the substantia nigra reticulata in the rat. Neuroscience 163(1):155–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ravizza T, Friedman LK, Moshe SL, Veliskova J (2003) Sex differences in GABA(A)ergic system in rat substantia nigra pars reticulata. Int J Dev Neurosci 21(5):245–254

    Article  CAS  PubMed  Google Scholar 

  10. Moshe SL, Brown LL, Kubova H, Veliskova J, Zukin RS, Sperber EF (1994) Maturation and segregation of brain networks that modify seizures. Brain Res 665(1):141–146

    Article  CAS  PubMed  Google Scholar 

  11. Veliskova J, Kubova H, Friedman LK, Wu R, Sperber EF, Zukin RS, Moshe SL (1998) The expression of GABA(A) receptor subunits in the substantia nigra is developmentally regulated and region-specific. Ital J Neurol Sci 19(4):205–210

    Article  CAS  PubMed  Google Scholar 

  12. Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18(5):1693–1703

    CAS  PubMed  Google Scholar 

  13. Wei W, Zhang N, Peng Z, Houser CR, Mody I (2003) Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus. J Neurosci 23(33):10650–10661

    CAS  PubMed  Google Scholar 

  14. Saxena NC, Macdonald RL (1994) Assembly of GABAA receptor subunits: role of the delta subunit. J Neurosci 14(11 Pt 2):7077–7086

    CAS  PubMed  Google Scholar 

  15. Bai D, Zhu G, Pennefather P, Jackson MF, MacDonald JF, Orser BA (2001) Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons. Mol Pharmacol 59(4):814–824

    CAS  PubMed  Google Scholar 

  16. Nusser Z, Mody I (2002) Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 87(5):2624–2628

    CAS  PubMed  Google Scholar 

  17. Stell BM, Mody I (2002) Receptors with different affinities mediate phasic and tonic GABA(A) conductances in hippocampal neurons. J Neurosci 22(10):RC223

    PubMed  Google Scholar 

  18. Semyanov A, Walker MC, Kullmann DM, Silver RA (2004) Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci 27(5):262–269

    Article  CAS  PubMed  Google Scholar 

  19. Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101(4):815–850

    Article  CAS  PubMed  Google Scholar 

  20. Galanopoulou AS (2006) Sex- and cell-type-specific patterns of GABAA receptor and estradiol-mediated signaling in the immature rat substantia nigra. Eur J Neurosci 23(9):2423–2430

    Article  PubMed  Google Scholar 

  21. McCabe RT, Wamsley JK, Yezuita JP, Olsen RW (1988) A novel GABAA antagonist [3H]SR 95531: microscopic analysis of binding in the rat brain and allosteric modulation by several benzodiazepine and barbiturate receptor ligands. Synapse 2(2):163–173

    Article  CAS  PubMed  Google Scholar 

  22. Heaulme M, Chambon JP, Leyris R, Wermuth CG, Biziere K (1987) Characterization of the binding of [3H]SR 95531, a GABAA antagonist, to rat brain membranes. J Neurochem 48(6):1677–1686

    Article  CAS  PubMed  Google Scholar 

  23. Catterall WA, Goldin AL, Waxman SG (2005) International union of pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57(4):397–409

    Article  CAS  PubMed  Google Scholar 

  24. Atherton JF, Bevan MD (2005) Ionic mechanisms underlying autonomous action potential generation in the somata and dendrites of GABAergic substantia nigra pars reticulata neurons in vitro. J Neurosci 25(36):8272–8281

    Article  CAS  PubMed  Google Scholar 

  25. King AE, Lopez-Garcia JA (1993) Excitatory amino acid receptor-mediated neurotransmission from cutaneous afferents in rat dorsal horn in vitro. J Physiol 472:443–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Shao LR, Dudek FE (2005) Changes in mIPSCs and sIPSCs after kainate treatment: evidence for loss of inhibitory input to dentate granule cells and possible compensatory responses. J Neurophysiol 94(2):952–960

    Article  CAS  PubMed  Google Scholar 

  27. Liang J, Cagetti E, Olsen RW, Spigelman I (2004) Altered pharmacology of synaptic and extrasynaptic GABAA receptors on CA1 hippocampal neurons is consistent with subunit changes in a model of alcohol withdrawal and dependence. J Pharmacol Exp Ther 310(3):1234–1245

    Article  CAS  PubMed  Google Scholar 

  28. Jensen K, Chiu CS, Sokolova I, Lester HA, Mody I (2003) GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J Neurophysiol 90(4):2690–2701

    Article  CAS  PubMed  Google Scholar 

  29. Leao RM, Mellor JR, Randall AD (2000) Tonic benzodiazepine-sensitive GABAergic inhibition in cultured rodent cerebellar granule cells. Neuropharmacology 39(6):990–1003

    Article  CAS  PubMed  Google Scholar 

  30. Wurpel JN, Tempel A, Sperber EF, Moshe SL (1988) Age-related changes of muscimol binding in the substantia nigra. Brain Res 471(2):305–308

    Article  CAS  PubMed  Google Scholar 

  31. Pritchett DB, Luddens H, Seeburg PH (1989) Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science 245(4924):1389–1392

    Article  CAS  PubMed  Google Scholar 

  32. Kyrozis A, Chudomel O, Moshe SL, Galanopoulou AS (2006) Sex-dependent maturation of GABAA receptor-mediated synaptic events in rat substantia nigra reticulata. Neurosci Lett 398(1–2):1–5

    Article  CAS  PubMed  Google Scholar 

  33. Song I, Savtchenko L, Semyanov A (2011) Tonic excitation or inhibition is set by GABA(A) conductance in hippocampal interneurons. Nat Commun 2:376

    Article  PubMed Central  PubMed  Google Scholar 

  34. Shen H, Sabaliauskas N, Sherpa A, Fenton AA, Stelzer A, Aoki C, Smith SS (2010) A critical role for alpha4betadelta GABAA receptors in shaping learning deficits at puberty in mice. Science 327(5972):1515–1518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Laurie DJ, Wisden W, Seeburg PHMS (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12(11):4151–4172

    CAS  PubMed  Google Scholar 

  36. Peden DR, Petitjean CM, Herd MB, Durakoglugil MS, Rosahl TW, Wafford K, Homanics GE, Belelli D, Fritschy JM, Lambert JJ (2008) Developmental maturation of synaptic and extrasynaptic GABAA receptors in mouse thalamic ventrobasal neurones. J Physiol 586(4):965–987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Nguyen L, Rigo JM, Rocher V, Belachew S, Malgrange B, Rogister B, Leprince P, Moonen G (2001) Neurotransmitters as early signals for central nervous system development. Cell Tissue Res 305(2):187–202

    Article  CAS  PubMed  Google Scholar 

  38. Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3(9):728–739

    Article  CAS  PubMed  Google Scholar 

  39. Rossi DJ, Hamann M, Attwell D (2003) Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J Physiol 548(Pt 1):97–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Glykys J, Mody I (2007) The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. J Physiol 582(Pt 3):1163–1178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 497(Pt 3):753–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8(6):797–804

    Article  CAS  PubMed  Google Scholar 

  43. Chandra D, Jia F, Liang J, Peng Z, Suryanarayanan A, Werner DF, Spigelman I, Houser CR, Olsen RW, Harrison NL, Homanics GE (2006) GABAA receptor alpha 4 subunits mediate extrasynaptic inhibition in thalamus and dentate gyrus and the action of gaboxadol. Proc Natl Acad Sci USA 103(41):15230–15235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA (2002) Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. Br J Pharmacol 136(7):965–974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ogurusu T, Yanagi K, Watanabe M, Fukaya M, Shingai R (1999) Localization of GABA receptor rho 2 and rho 3 subunits in rat brain and functional expression of homooligomeric rho 3 receptors and heterooligomeric rho 2 rho 3 receptors. Recept Channels 6(6):463–475

    CAS  PubMed  Google Scholar 

  46. Baur R, Sigel E (2003) On high- and low-affinity agonist sites in GABAA receptors. J Neurochem 87(2):325–332

    Article  CAS  PubMed  Google Scholar 

  47. Sur C, Farrar SJ, Kerby J, Whiting PJ, Atack JR, McKernan RM (1999) Preferential coassembly of alpha4 and delta subunits of the gamma-aminobutyric acidA receptor in rat thalamus. Mol Pharmacol 56(1):110–115

    CAS  PubMed  Google Scholar 

  48. Sur C, Quirk K, Dewar D, Atack J, McKernan R (1998) Rat and human hippocampal alpha5 subunit-containing gamma-aminobutyric acidA receptors have alpha5 beta3 gamma2 pharmacological characteristics. Mol Pharmacol 54(5):928–933

    CAS  PubMed  Google Scholar 

  49. Mihalek RM, Banerjee PK, Korpi ER, Quinlan JJ, Firestone LL, Mi ZP, Lagenaur C, Tretter V, Sieghart W, Anagnostaras SG, Sage JR, Fanselow MS, Guidotti A, Spigelman I, Li Z, DeLorey TM, Olsen RW, Homanics GE (1999) Attenuated sensitivity to neuroactive steroids in gamma-aminobutyrate type A receptor delta subunit knockout mice. Proc Natl Acad Sci USA 96(22):12905–12910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Storustovu SI, Ebert B (2006) Pharmacological characterization of agonists at delta-containing GABAA receptors: functional selectivity for extrasynaptic receptors is dependent on the absence of gamma2. J Pharmacol Exp Ther 316(3):1351–1359

    Article  CAS  PubMed  Google Scholar 

  51. Corey JL, Guastella J, Davidson N, Lester HA (1994) GABA uptake and release by a mammalian cell line stably expressing a cloned rat brain GABA transporter. Mol Membr Biol 11(1):23–30

    Article  CAS  PubMed  Google Scholar 

  52. Chang Y, Covey DF, Weiss DS (2000) Correlation of the apparent affinities and efficacies of gamma-aminobutyric acid(C) receptor agonists. Mol Pharmacol 58(6):1375–1380

    CAS  PubMed  Google Scholar 

  53. Wang TL, Guggino WB, Cutting GR (1994) A novel gamma-aminobutyric acid receptor subunit (rho 2) cloned from human retina forms bicuculline-insensitive homooligomeric receptors in Xenopus oocytes. J Neurosci 14(11 Pt 1):6524–6531

    CAS  PubMed  Google Scholar 

  54. Sperber EF, Moshe SL (1988) Age-related differences in seizure susceptibility to flurothyl. Brain Res 467(2):295–297

    Article  CAS  PubMed  Google Scholar 

  55. Staley KJ, Mody I (1992) Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. J Neurophysiol 68(1):197–212

    CAS  PubMed  Google Scholar 

  56. Galanopoulou AS, Kyrozis A, Claudio OI, Stanton PK, Moshe SL (2003) Sex-specific KCC2 expression and GABA(A) receptor function in rat substantia nigra. Exp Neurol 183(2):628–637

    Article  CAS  PubMed  Google Scholar 

  57. Sperber EF, Wong BY, Wurpel JN, Moshe SL (1987) Nigral infusions of muscimol or bicuculline facilitate seizures in developing rats. Brain Res 465(1–2):243–250

    Article  CAS  PubMed  Google Scholar 

  58. Xu SG, Garant DS, Sperber EF, Moshe SL (1992) The proconvulsant effect of nigral infusions of THIP on flurothyl-induced seizures in rat pups. Brain Res Dev Brain Res 68(2):275–277

    Article  CAS  PubMed  Google Scholar 

  59. Veliskova J, Loscher W, Moshe SL (1998) Regional and age specific effects of zolpidem microinfusions in the substantia nigra on seizures. Epilepsy Res 30(2):107–114

    Article  CAS  PubMed  Google Scholar 

  60. Romo-Parra H, Trevino M, Heinemann U, Gutierrez R (2008) GABA actions in hippocampal area CA3 during postnatal development: differential shift from depolarizing to hyperpolarizing in somatic and dendritic compartments. J Neurophysiol 99(3):1523–1534

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Grant support by NIH NINDS Grants NS020253, NS045243, NS058303, NS062947, NS078333, grants from the International Rett Syndrome Foundation, PACE, Heffer Family Foundation, Autism Speaks, Citizens United for Research in Epilepsy (CURE), Department of Defense, and GAČR 309/08/H079. SLM is the Charles Frost Chair in Neurosurgery and Neurology.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Chudomel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chudomel, O., Hasson, H., Bojar, M. et al. Age- and Sex-Related Characteristics of Tonic Gaba Currents in the Rat Substantia Nigra Pars Reticulata. Neurochem Res 40, 747–757 (2015). https://doi.org/10.1007/s11064-015-1523-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1523-3

Keywords

Navigation