Skip to main content
Log in

The Nicotinic α6-Subunit Selective Antagonist bPiDI Reduces Alcohol Self-Administration in Alcohol-Preferring Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cigarettes and alcohol are the most abused substances in the world and are commonly co-abused. Nicotine primarily acts in the brain on nicotinic acetylcholine receptors (nAChR), which are also a target for alcohol. The alpha6 subunit of nAChR is expressed almost exclusively in the brain reward system and may modulate the rewarding properties of alcohol and nicotine. Recently, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI) was synthesized as a selective, brain penetrant α6 subunit antagonist that reduces nicotine self-administration. The current study aimed to examine the effects of bPiDI on alcohol self-administration in inbred alcohol-preferring (iP) rats. Adult, male iP rats were trained to self-administer alcohol or sucrose. Once stable responding was achieved, rats were injected with bPiDI (1, 3 mg/kg, i.p.) and tested for self-administration under fixed and progressive ratio schedules of reinforcement. They subsequently underwent extinction, in which no rewards or cues were presented in the operant chambers. Then, they were injected with bPiDI prior to testing for cue-induced reinstatement of reward seeking. bPiDI (3 mg/kg) significantly reduced alcohol self-administration in both fixed and progressive ratios without any effects on sucrose self-administration or locomotor activity. In contrast, bPiDI (3 mg/kg) did not inhibit cue-induced reinstatement of either alcohol or sucrose seeking. The results support the involvement of α6 containing nAChR in reinforcing effects of alcohol, but not relapse to alcohol-seeking, without any impact on responding for a natural reward or general activity. bPiDI may be a potential lead molecule for a therapeutic strategy to limit nicotine and alcohol consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. World Health Organization (2011) Global status report on noncommunicable diseases 2010. World Health Organization, Geneva

    Google Scholar 

  2. Falk DE, Yi HY, Hiller-Sturmhofel S (2006) An epidemiologic analysis of co-occurring alcohol and tobacco use and disorders: findings from the National Epidemiologic Survey on alcohol and related conditions. Alcohol Res Health 29:162–171

    PubMed  Google Scholar 

  3. Clark A, Lindgren S, Brooks SP, Watson WP, Little HJ (2001) Chronic infusion of nicotine can increase operant self-administration of alcohol. Neuropharmacology 41:108–117

    Article  CAS  PubMed  Google Scholar 

  4. Leao RM, Cruz FC, Vendruscolo LF, de Guglielmo G, Logrip ML, Planeta CS, Hope BT, Koob GF, George O (2015) Chronic nicotine activates stress/reward-related brain regions and facilitates the transition to compulsive alcohol drinking. J Neurosci 35:6241–6253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rose JE, Brauer LH, Behm FM, Cramblett M, Calkins K, Lawhon D (2004) Psychopharmacological interactions between nicotine and ethanol. Nicotine Tob Res 6:133–144

    Article  CAS  PubMed  Google Scholar 

  6. Hurst R, Rollema H, Bertrand D (2013) Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther 137:22–54

    Article  CAS  PubMed  Google Scholar 

  7. Steensland P, Simms JA, Holgate J, Richards JK, Bartlett SE (2007) Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, selectively decreases ethanol consumption and seeking. Proc Natl Acad Sci USA 104:12518–12523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bito-Onon JJ, Simms JA, Chatterjee S, Holgate J, Bartlett SE (2011) Varenicline, a partial agonist at neuronal nicotinic acetylcholine receptors, reduces nicotine-induced increases in 20 % ethanol operant self-administration in Sprague–Dawley rats. Addict Biol 16:440–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaminski BJ, Weerts EM (2014) The effects of varenicline on alcohol seeking and self-administration in baboons. Alcohol Clin Exp Res 38:376–383

    Article  CAS  PubMed  Google Scholar 

  10. McKee SA, Harrison EL, O’Malley SS, Krishnan-Sarin S, Shi J, Tetrault JM, Picciotto MR, Petrakis IL, Estevez N, Balchunas E (2009) Varenicline reduces alcohol self-administration in heavy-drinking smokers. Biol Psychiatry 66:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fucito LM, Toll BA, Wu R, Romano DM, Tek E, O’Malley SS (2011) A preliminary investigation of varenicline for heavy drinking smokers. Psychopharmacology (Berl) 215:655–663

    Article  CAS  Google Scholar 

  12. Larsson A, Edstrom L, Svensson L, Soderpalm B, Engel JA (2005) Voluntary ethanol intake increases extracellular acetylcholine levels in the ventral tegmental area in the rat. Alcohol Alcohol 40:349–358

    Article  CAS  PubMed  Google Scholar 

  13. Blomqvist O, Soderpalm B, Engel JA (1992) Ethanol-induced locomotor activity: involvement of central nicotinic acetylcholine receptors? Brain Res Bull 29:173–178

    Article  CAS  PubMed  Google Scholar 

  14. Madsen HB, Koghar HS, Pooters T, Massalas JS, Drago J, Lawrence AJ (2015) Role of alpha4- and alpha6-containing nicotinic receptors in the acquisition and maintenance of nicotine self-administration. Addict Biol 20:500–512

    Article  PubMed  Google Scholar 

  15. Blomqvist O, Ericson M, Johnson DH, Engel JA, Soderpalm B (1996) Voluntary ethanol intake in the rat: effects of nicotinic acetylcholine receptor blockade or subchronic nicotine treatment. Eur J Pharmacol 314:257–267

    Article  CAS  PubMed  Google Scholar 

  16. Hendrickson LM, Guildford MJ, Tapper AR (2013) Neuronal nicotinic acetylcholine receptors: common molecular substrates of nicotine and alcohol dependence. Front Psychiatry 4:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feduccia AA, Chatterjee S, Bartlett SE (2012) Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions. Front Mol Neurosci 5:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leslie FM, Mojica CY, Reynaga DD (2013) Nicotinic receptors in addiction pathways. Mol Pharmacol 83:753–758

    Article  CAS  PubMed  Google Scholar 

  20. Changeux JP (2010) Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat Rev Neurosci 11:389–401

    Article  CAS  PubMed  Google Scholar 

  21. Kuzmin A, Jerlhag E, Liljequist S, Engel J (2009) Effects of subunit selective nACh receptors on operant ethanol self-administration and relapse-like ethanol-drinking behavior. Psychopharmacology (Berl) 203:99–108

    Article  CAS  Google Scholar 

  22. Goldner FM, Dineley KT, Patrick JW (1997) Immunohistochemical localization of the nicotinic acetylcholine receptor subunit alpha6 to dopaminergic neurons in the substantia nigra and ventral tegmental area. Neuroreport 8:2739–2742

    Article  CAS  PubMed  Google Scholar 

  23. Larsson A, Jerlhag E, Svensson L, Soderpalm B, Engel JA (2004) Is an alpha-conotoxin MII-sensitive mechanism involved in the neurochemical, stimulatory, and rewarding effects of ethanol? Alcohol 34:239–250

    Article  CAS  PubMed  Google Scholar 

  24. Liu L, Zhao-Shea R, McIntosh JM, Tapper AR (2013) Nicotinic acetylcholine receptors containing the alpha6 subunit contribute to ethanol activation of ventral tegmental area dopaminergic neurons. Biochem Pharmacol 86:1194–1200

    Article  CAS  PubMed  Google Scholar 

  25. Azam L, McIntosh JM (2009) Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors. Acta Pharmacol Sin 30:771–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dwoskin LP, Wooters TE, Sumithran SP, Siripurapu KB, Joyce BM, Lockman PR, Manda VK, Ayers JT, Zhang Z, Deaciuc AG, McIntosh JM, Crooks PA, Bardo MT (2008) N,N’-Alkane-diyl-bis-3-picoliniums as nicotinic receptor antagonists: inhibition of nicotine-evoked dopamine release and hyperactivity. J Pharmacol Exp Ther 326:563–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wooters TE, Smith AM, Pivavarchyk M, Siripurapu KB, McIntosh JM, Zhang Z, Crooks PA, Bardo MT, Dwoskin LP (2011) BPiDI: a novel selective α6β2* nicotinic receptor antagonist and preclinical candidate treatment for nicotine abuse. Br J Pharmacol 163:346–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cowen MS, Adams C, Kraehenbuehl T, Vengeliene V, Lawrence AJ (2005) The acute anti-craving effect of acamprosate in alcohol-preferring rats is associated with modulation of the mesolimbic dopamine system. Addict Biol 10:233–242

    Article  CAS  PubMed  Google Scholar 

  29. Jupp B, Krivdic B, Krstew E, Lawrence AJ (2011) The orexin(1) receptor antagonist SB-334867 dissociates the motivational properties of alcohol and sucrose in rats. Brain Res 1391:54–59

    Article  CAS  PubMed  Google Scholar 

  30. Lawrence AJ, Cowen MS, Yang HJ, Chen F, Oldfield B (2006) The orexin system regulates alcohol-seeking in rats. Br J Pharmacol 148:752–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liang JH, Chen F, Krstew E, Cowen MS, Carroll FY, Crawford D, Beart PM, Lawrence AJ (2006) The GABA(B) receptor allosteric modulator CGP7930, like baclofen, reduces operant self-administration of ethanol in alcohol-preferring rats. Neuropharmacology 50:632–639

    Article  CAS  PubMed  Google Scholar 

  32. Blomqvist O, Engel JA, Nissbrandt H, Soderpalm B (1993) The mesolimbic dopamine-activating properties of ethanol are antagonized by mecamylamine. Eur J Pharmacol 249:207–213

    Article  CAS  PubMed  Google Scholar 

  33. Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227

    Article  CAS  PubMed  Google Scholar 

  34. Yang K, Buhlman L, Khan GM, Nichols RA, Jin G, McIntosh JM, Whiteaker P, Lukas RJ, Wu J (2011) Functional nicotinic acetylcholine receptors containing alpha6 subunits are on GABAergic neuronal boutons adherent to ventral tegmental area dopamine neurons. J Neurosci 31:2537–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee AM, Messing RO (2011) Protein kinase C epsilon modulates nicotine consumption and dopamine reward signals in the nucleus accumbens. Proc Natl Acad Sci USA 108:16080–16085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olive MF, Mehmert KK, Messing RO, Hodge CW (2000) Reduced operant ethanol self-administration and in vivo mesolimbic dopamine responses to ethanol in PKCepsilon-deficient mice. Eur J Neurosci 12:4131–4140

    Article  CAS  PubMed  Google Scholar 

  37. Powers MS, Broderick HJ, Drenan RM, Chester JA (2013) Nicotinic acetylcholine receptors containing alpha6 subunits contribute to alcohol reward-related behaviours. Genes Brain Behav 12:543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Drenan RM, Grady SR, Whiteaker P, McClure-Begley T, McKinney S, Miwa JM, Bupp S, Heintz N, McIntosh JM, Bencherif M, Marks MJ, Lester HA (2008) In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha6 nicotinic acetylcholine receptors. Neuron 60:123–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Lee JW, Oh G, Grady SR, McIntosh JM, Brunzell DH, Cannon JR, Drenan RM (2014) Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function alpha6* nAChRs. J Neurochem 129:315–327

    Article  CAS  PubMed  Google Scholar 

  40. Engle SE, McIntosh JM, Drenan RM (2015) Nicotine and ethanol cooperate to enhance ventral tegmental area AMPA receptor function via alpha6-containing nicotinic receptors. Neuropharmacology 91:13–22

    Article  CAS  PubMed  Google Scholar 

  41. Won WY, Park B, Choi SW, Kim L, Kwon M, Kim JH, Lee CU, Shin HD, Kim DJ (2014) Genetic association of CHRNB3 and CHRNA6 gene polymorphisms with nicotine dependence syndrome scale in Korean population. Psychiatry Investig 11:307–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Culverhouse RC, Johnson EO, Breslau N, Hatsukami DK, Sadler B, Brooks AI, Hesselbrock VM, Schuckit MA, Tischfield JA, Goate AM, Saccone NL, Bierut LJ (2014) Multiple distinct CHRNB3-CHRNA6 variants are genetic risk factors for nicotine dependence in African Americans and European Americans. Addiction 109:814–822

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang S, DvdV A, Xu Q, Seneviratne C, Pomerleau OF, Pomerleau CS, Payne TJ, Ma JZ, Li MD (2014) Significant associations of CHRNA2 and CHRNA6 with nicotine dependence in European American and African American populations. Hum Genet 133:575–586

    Article  CAS  PubMed  Google Scholar 

  44. Hoft NR, Corley RP, McQueen MB, Huizinga D, Menard S, Ehringer MA (2009) SNPs in CHRNA6 and CHRNB3 are associated with alcohol consumption in a nationally representative sample. Genes Brain Behav 8:631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hoft NR, Corley RP, McQueen MB, Schlaepfer IR, Huizinga D, Ehringer MA (2009) Genetic association of the CHRNA6 and CHRNB3 genes with tobacco dependence in a nationally representative sample. Neuropsychopharmacology 34:698–706

    Article  CAS  PubMed  Google Scholar 

  46. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    Article  PubMed  Google Scholar 

  47. Le AD, Wang A, Harding S, Juzytsch W, Shaham Y (2003) Nicotine increases alcohol self-administration and reinstates alcohol seeking in rats. Psychopharmacology (Berl) 168:216–221

    Article  CAS  Google Scholar 

  48. Barrett SP, Tichauer M, Leyton M, Pihl RO (2006) Nicotine increases alcohol self-administration in non-dependent male smokers. Drug Alcohol Depend 81:197–204

    Article  CAS  PubMed  Google Scholar 

  49. Ericson M, Lof E, Stomberg R, Soderpalm B (2009) The smoking cessation medication varenicline attenuates alcohol and nicotine interactions in the rat mesolimbic dopamine system. J Pharmacol Exp Ther 329:225–230

    Article  CAS  PubMed  Google Scholar 

  50. Wouda JA, Riga D, De Vries W, Stegeman M, van Mourik Y, Schetters D, Schoffelmeer AN, Pattij T, De Vries TJ (2011) Varenicline attenuates cue-induced relapse to alcohol, but not nicotine seeking, while reducing inhibitory response control. Psychopharmacology (Berl) 216:267–277

    Article  CAS  Google Scholar 

  51. Mihalak KB, Carroll FI, Luetje CW (2006) Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol 70:801–805

    Article  CAS  PubMed  Google Scholar 

  52. Lof E, Olausson P, deBejczy A, Stomberg R, McIntosh JM, Taylor JR, Soderpalm B (2007) Nicotinic acetylcholine receptors in the ventral tegmental area mediate the dopamine activating and reinforcing properties of ethanol cues. Psychopharmacology (Berl) 195:333–343

    Article  Google Scholar 

  53. Vengeliene V, Bilbao A, Molander A, Spanagel R (2008) Neuropharmacology of alcohol addiction. Br J Pharmacol 154:299–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ford MM, Fretwell AM, Nickel JD, Mark GP, Strong MN, Yoneyama N, Finn DA (2009) The influence of mecamylamine on ethanol and sucrose self-administration. Neuropharmacology 57:250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Neugebauer NM, Zhang Z, Crooks PA, Dwoskin LP, Bardo MT (2006) Effect of a novel nicotinic receptor antagonist, N,N’-dodecane-1,12-diyl-bis-3-picolinium dibromide, on nicotine self-administration and hyperactivity in rats. Psychopharmacology (Berl) 184:426–434

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the NHMRC Australia (Project Grant 628680), Royal Golden Jubilee PhD Program (PHD/0253/2552), Thailand Research Fund (DPG5780001), Mahidol University and a Committee for Aid and Education in Neurochemistry Grant (CAEN) from the International Society for Neurochemistry (ISN). AJL is a Fellow of the NHMRC (1020737). We also acknowledge the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Lawrence.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srisontiyakul, J., Kastman, H.E., Krstew, E.V. et al. The Nicotinic α6-Subunit Selective Antagonist bPiDI Reduces Alcohol Self-Administration in Alcohol-Preferring Rats. Neurochem Res 41, 3206–3214 (2016). https://doi.org/10.1007/s11064-016-2045-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2045-3

Keywords

Navigation