Skip to main content
Log in

Possible Mechanisms Involved in Attenuation of Lipopolysaccharide-Induced Memory Deficits by Methyl Jasmonate in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This present study was carried out to investigate the likely mechanisms by which methyl jasmonate (MJ), ‘an agent widely used in aromatherapy for neurological disorders, attenuates lipopolysaccharide (LPS)-induced memory deficits in mice. Mice were given intraperitoneal administration of LPS (250 µg/kg) alone or in combination with MJ (10–40 mg/kg), donepezil, DP (1 mg/kg), or vehicle for 7 successive days. Thereafter, memory was assessed using object recognition test (ORT). Acetylcholinesterase and myeloperoxidase activities were estimated in brain tissue homogenates. Brain levels of nitric oxide and markers of oxidative stress as well as histopathologic changes of the prefrontal cortex and cornu ammonis 1 (CA1) of the hippocampal region were also assessed. MJ (10–40 mg/kg) attenuated LPS-induced memory impairment in ORT. Moreover, the increased brain activities of acetylcholinesterase and myeloperoxidase enzymes were suppressed by MJ when compared with control (p < 0.05). Increased brain oxidative stress and nitric oxide levels in LPS-treated mice were significantly decreased by MJ. It offers protection against LPS-induced neuronal degeneration of the prefrontal cortex and CA1 of the hippocampus, suggesting neuroprotective effect. Taken together, these findings showed that MJ offers protection against LPS-induced memory deficits via mechanisms related to inhibition of acetylcholinesterase, myeloperoxidase, oxidative stress and neuronal degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cesari IM, Carvalho E, Rodrigues MF, Mendonça BS, Amôedo ND, Rumjanek FD (2014) Methyl jasmonate: putative mechanisms of action on cancer cells cycle, metabolism, and apoptosis. Int J Cell Biol 2014:1–25

    Article  Google Scholar 

  2. Bowles DJ (1990) Defense-related proteins in higher plant. Ann Rev Biochemistr 59:873–907

    Article  CAS  Google Scholar 

  3. Belsito DD, Bickers M, Bruze P, Calow M, Dagli AD, Fryer H, Greim JH, HanifinY, Miyachi JH, Saurat IG (2012) Sipes, Toxicologic and dermatologic assessment ofcyclopentanones and cyclopentenones when used as fragrance ingredients. Food Chem Toxicol 50:S572–S576

    Article  Google Scholar 

  4. Hossain SJ, Aoshima H, Corda H, KisoY (2004) Fragrances in oolong that enhance the response of GABAA receptors. Biosci Biochnol Biochem 68:1242–1248

    Google Scholar 

  5. Umukoro S, Eduviere AT, Aladeokin AC (2012) Anti-aggressive activity of methyl jasmonate and the probable mechanism of its action in mice. Pharmacol Biochem Behav 101:271–277

    Article  CAS  PubMed  Google Scholar 

  6. Umukoro S, Alabi AO, Aladeokin AC (2011) Antidepressant activity of methyl jasmonate, a plant stress hormone in mice. Pharmacol Biochem Behav 98:8–11

    Article  CAS  PubMed  Google Scholar 

  7. Umukoro S, Olugbemide AS (2011) Antinociceptive effects of methyl jasmonate in experimental animals. J Nat Med 65:466–470

    Article  CAS  PubMed  Google Scholar 

  8. Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT (2008) Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of Beta-Amyloid generation. J Neuroinflamm 5:37

    Article  Google Scholar 

  9. Frühauf PKS, Ineu RP, Tomazi L, Duarte T, Mello CF, Rubin MA (2015) Spermine reverses lipopolysaccharide-induced memory deficit in mice. J Neuroinflammation 12:1–11. doi:10.1186/s12974-014-0220-5

    Article  Google Scholar 

  10. Houdek HM, Larson J, Watt JA, Rosenberger TA (2014) Bacterial lipopolysaccharide induces a dose-dependent activation of neuroglia and loss of basal forebrain cholinergic cells in the rat brain. Inflamm Cell Signal 1:e47. doi:10.14800/ics.47

    PubMed  PubMed Central  Google Scholar 

  11. Czerniawski J, Miyashita T, Lewandowski G, Guzowski JF (2015) Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation. Brain Behav Immun 44:159–166

    Article  CAS  PubMed  Google Scholar 

  12. Ming Z, Wotton CA, Appleton RT, Ching JC, Loewen ME, Sawicki G, Bekar LK (2015) Systemic lipopolysaccharide-mediated alteration of cortical neuromodulation involves increases in monoamine oxidase-A and acetylcholinesterase activity. J Neuroinflammation 12:37–47

    Article  PubMed  PubMed Central  Google Scholar 

  13. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147

    Article  CAS  PubMed  Google Scholar 

  14. Potter PE (2013) Curcumin: a natural substance with potential efficacy in Alzheimer’s disease. J Exp Pharmacol 5:23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moreira PI, Santos MS, Oliveira CR, Shenk JC, Nunomura A, Smith MA, Zhu X, Perry G (2008) Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol Disord Drug Targ 7:3–10

    Article  CAS  Google Scholar 

  16. Myhrer T (2003) Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Research Review 41(2–3):268–287

    Article  CAS  Google Scholar 

  17. Terry AW, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827

    Article  CAS  PubMed  Google Scholar 

  18. Rountree SD, Chan W, Pavlik VN, Darby EJ, Siddiqui S, Doody RS (2009) Persistent treatment with cholinesterase inhibitors and/or memantine slows clinical progression of Alzheimer disease. Alzheimers Res Ther 1:7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hsieh MT, Peng WH, Wu CR, Ng KY, Cheng CL, Xu HX (2010) Review on experimental research of herbal medicines with anti-amnesic activity. Planta Med 76:203–217

    Article  CAS  PubMed  Google Scholar 

  20. Uttara B, Singh AW, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eduviere AT, Umukoro S, Aderibigbe AO, Ajayi AM, Adewole FA (2015) Methyl jasmonate enhances memory performance through inhibition of oxidative stress and acetylcholinesterase activity in mice. Life Sci 132:20–26

    Article  CAS  PubMed  Google Scholar 

  22. Klinkenberg I, Blokland A (2010) The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev 34:1307–1350

    Article  CAS  PubMed  Google Scholar 

  23. Deng XH, Li M, Ai W, He L, Lu D, Patrylo PR, Cai H, Luo X, Li ZX, Yan X-X (2014) Lipolysaccharide-induced neuroinflammation is associated with Alzheimer-like amyloidogenic axonal pathology and dendritic degeneration in rats. Advances Alzheimer’s Disease 3:78–93

    Article  CAS  Google Scholar 

  24. Taglialatela G, Hogan D, Zhang WR, Dineley KT (2009) Intermediate-and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 200:95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ellman GL, Courtney KD, Andre JV, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  26. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  CAS  PubMed  Google Scholar 

  27. Adam-Vizi A, Seregi V (1982) Receptor independent stimulatory effect of noradrenaline on Na+/K+-ATPase in rat brain homogenate, role of lipid peroxidation. Biochem Pharmacol 34:2231–2236

    Article  Google Scholar 

  28. Misra HP, Fridovich I (1972) The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  29. Sinha KA (1971) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  Google Scholar 

  30. Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209

    Article  CAS  PubMed  Google Scholar 

  31. Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  32. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum protein bymeans of biuret reaction. J Biol Chem 177:751–766

    CAS  PubMed  Google Scholar 

  33. Eltony SA, Elgayar SA (2014) Histological study on effect of Nigella sativa on aged olfactory system of female albino rat. Rom J Morphol Embryol 55:325–334

    PubMed  Google Scholar 

  34. Going JJ (1994) Efficiently estimated histologic cell counts. Hum Pathol 25:333–336

    Article  CAS  PubMed  Google Scholar 

  35. Anaeigoudari A, Shafei MN, Soukhtanloo M, Sadeghnia HR, Reisi R, Beheshti F, Mohebbati R, Mousavi SM, Hosseini M (2015) Lipopolysaccharide-induced memory impairment in rats is preventable using 7-nitroindazole. Arq Neuropsiquiatr 73:784–790

    Article  PubMed  Google Scholar 

  36. Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215:244–254

    Article  CAS  PubMed  Google Scholar 

  37. Kraft AD, Harry GJ (2011) Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 8:2980–3018

    Article  PubMed  PubMed Central  Google Scholar 

  38. Loria V, Dato I, Graziani F, Biasucci LM (2008) Myeloperoxidase: a new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediators Inflamm 4. doi:10.1155/2008/135625 (Article ID 135625)

  39. Willard LB, Hauss-wegrzniak B, Danysz W, Wenk GL (2000). The cytotoxicity of chronic neuroinflammation upon basal forebrain cholinergic neurons of rats can be attenuated by glutamatergic antagonism or cyclooxygenase-2 inhibition. Exp Brain Res 134:58–65

    Article  CAS  PubMed  Google Scholar 

  40. Semmler A, Frisch C, Debeir T, Ramanathan M, Okulla T, Klockgether T, Heneka MT (2007) Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol 204:733–740

  41. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  42. Maki RA, Tyurin VA, Lyon RC, Hamilton RL, DeKosky ST, Kagan VE, Reynolds WF (2009) Aberrant expression of myeloperoxidase in astrocytes promotes phospholipid oxidation and memory deficits in a mouse model of Alzheimer disease. J Biol Chem 284:3158–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kubota K, Saiwai H, Kumamaru H, Maeda T, Ohkawa Y, Aratani Y, Nagano T, Iwamoto Y, Okada S (2012) Myeloperoxidase exacerbates secondary injury by generating highly reactive oxygen species and mediating neutrophil recruitment in experimental spinal cord injury. Spine (Phila Pa 1976) 37:1363–1369

    Article  Google Scholar 

  44. Gilgun-Sherki Y, Melamed E, Offen D (2003) Antioxidant treatment in Alzheimer’s disease: current state. J Mol Neurosci 21:1–11

    Article  CAS  PubMed  Google Scholar 

  45. Natalie A, Kelsey I, Heather M, Wilkins I, Linseman DA (2010) Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15:7792–7814

    Article  Google Scholar 

  46. Bejar C, Wang RH, Weinstock M (1999) Effect of rivastigmine on scopolamine induced memory impairment in rats. Eur J Pharmacol 383:231–240

    Article  CAS  PubMed  Google Scholar 

  47. Tyagi E, Agrawal R, Nath C, Shukla R (2008) Influence of LPS-induced neuroinflammation on acetylcholinesterase activity in rat brain. J Neuroimmunol 205:51–56

    Article  CAS  PubMed  Google Scholar 

  48. Environmental Protection Agency (EPA) (2013) Methyl jasmonate: exemption from the requirement of a tolerance. Fed Regist 78:22789–22794

    Google Scholar 

Download references

Acknowledgments

Authors thanked the technical staff of the Department of Pharmacology and Therapeutics for their assistance. We also appreciate Professors E.A. Bababumi and O.G. Ademowo for introducing methyl jasmonate to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon Umukoro.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eduviere, A.T., Umukoro, S., Adeoluwa, O.A. et al. Possible Mechanisms Involved in Attenuation of Lipopolysaccharide-Induced Memory Deficits by Methyl Jasmonate in Mice. Neurochem Res 41, 3239–3249 (2016). https://doi.org/10.1007/s11064-016-2050-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2050-6

Keywords

Navigation