Skip to main content

Advertisement

Log in

Disease-Modifying Effects of Neural Regeneration Peptide 2945 in the GAERS Model of Absence Epilepsy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epilepsy is a common neurological condition characterised by spontaneous recurrent seizures. Current anti-epileptic drugs are only effective and tolerated in ~70% of patients, leaving a substantial proportion of patients untreated. As such, there is a pressing need to develop new therapies. We assessed the anti-seizure activity of Neural Regeneration Peptide 2945 (NRP 2945) in the GAERS model of absence epilepsy. Drug effects on seizures were assessed using two study designs. Male adult GAERS were implanted with EEG electrodes to measure seizure frequency. The first study compared the effects of acute sc injection of vehicle, NRP 10 µg/kg, NRP 20 µg/kg, and controlled against the active comparator Valproaic acid (200 mg/kg). In the second study, animals received one of four treatments for 4 weeks: vehicle, NRP 60 µg/kg/day, NRP 120 µg/kg/day (delivered by continuous infusion) or NRP 20 µg/kg sc injected every second day (e.s.d). In the acute study, we found significant (p < 0.01) anti-seizure effects in animals treated with NRP2945 (20 µg/kg) and VPA, with NRP2945 slightly more efficacious, despite the 70,000 times lower molar dosage. In the chronic study, animals receiving 120 µg/kg/day and NRP 20 µg/kg e.s.d had significantly fewer seizures (p < 0.001), compared with vehicle. These effects were sustained for at least 10 days after drug treatment had ceased, indicative of disease-modifying activity. We demonstrate sustained anti-seizure effects of NRP2945, a potent small molecule peptide which enters the brain and is devoid of adverse effects. Early stage first-in-man trials have been initiated for subcutaneously delivered NRP2945 which is a promising step to providing therapeutic benefits for refractory epilepsy patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shorvon SD (2009) Drug treatment of epilepsy in the century of the ILAE: the second 50 years, 1959–2009. Epilepsia 50(Suppl 3):93–130

    Article  PubMed  Google Scholar 

  2. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319

    Article  CAS  PubMed  Google Scholar 

  3. Frasca A, Aalbers M, Frigerio F, Fiordaliso F, Salio M, Gobbi M, Cagnotto A, Gardoni F, Battaglia GS, Hoogland G, Di Luca M, Vezzani A (2011) Misplaced NMDA receptors in epileptogenesis contribute to excitotoxicity. Neurobiol Dis 43:507–515

    Article  CAS  PubMed  Google Scholar 

  4. Bonora E, Graziano C, Minopoli F, Bacchelli E, Magini P, Diquigiovanni C, Lomartire S, Bianco F, Vargiolu M, Parchi P, Marasco E, Mantovani V, Rampoldi L, Trudu M, Parmeggiani A, Battaglia A, Mazzone L, Tortora G, Imgsac, Maestrini E, Seri M, Romeo G (2014) Maternally inherited genetic variants of CADPS2 are present in autism spectrum disorders and intellectual disability patients. EMBO Mol Med 6:795–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40

    Article  CAS  PubMed  Google Scholar 

  6. Choi J, Nordli DR Jr, Alden TD, DiPatri A Jr, Laux L, Kelley K, Rosenow J, Schuele SU, Rajaram V, Koh S (2009) Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J Neuroinflammation 6:38

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fabene PF, Navarro Mora G, Martinello M, Rossi B, Merigo F, Ottoboni L, Bach S, Angiari S, Benati D, Chakir A, Zanetti L, Schio F, Osculati A, Marzola P, Nicolato E, Homeister JW, Xia L, Lowe JB, McEver RP, Osculati F, Sbarbati A, Butcher EC, Constantin G (2008) A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 14:1377–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fabene PF, Bramanti P, Constantin G (2010) The emerging role for chemokines in epilepsy. J Neuroimmunol 224:22–27

    Article  CAS  PubMed  Google Scholar 

  9. Bien CG, Urbach H, Schramm J, Soeder BM, Becker AJ, Voltz R, Vincent A, Elger CE (2007) Limbic encephalitis as a precipitating event in adult-onset temporal lobe epilepsy. Neurology 69:1236–1244

    Article  CAS  PubMed  Google Scholar 

  10. Varadkar S, Bien CG, Kruse CA, Jensen FE, Bauer J, Pardo CA, Vincent A, Mathern GW, Cross JH (2014) Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol 13:195–205

    Article  PubMed  PubMed Central  Google Scholar 

  11. Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, Bianchi ME, Vezzani A (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16:413–419

    Article  CAS  PubMed  Google Scholar 

  12. Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Betto G, Batra A, Carlton E, Najm I, Granata T, Janigro D (2009) Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol Dis 33:171–181

    Article  CAS  PubMed  Google Scholar 

  13. Dedeurwaerdere S, Friedman A, Fabene PF, Mazarati A, Murashima YL, Vezzani A, Baram TZ (2012) Finding a better drug for epilepsy: antiinflammatory targets. Epilepsia 53:1113–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sadakata T, Mizoguchi A, Sato Y, Katoh-Semba R, Fukuda M, Mikoshiba K, Furuichi T (2004) The secretory granule-associated protein CAPS2 regulates neurotrophin release and cell survival. J Neurosci 24:43–52

    Article  CAS  PubMed  Google Scholar 

  15. Sieg F, Antonic A (2007) In vitro strategies to enable the establishment of a functional CNS network. In: Sogos V, Diana A (eds) Alternative strategies in neuroregeneration and neurogenesis. Research signpost edition, Trivandrum, pp 27–58

    Google Scholar 

  16. De Sarro G, Liberto MC, Berlinghieri MC, Foca A, Aragona M, Cavaliere R, Gulletta E (1996) Impairment of immunological functions in genetically epilepsy-prone rats. Gen Pharmacol 27:643–646

    Article  PubMed  Google Scholar 

  17. Gorba T, Bradoo P, Antonic A, Marvin K, Liu DX, Lobie PE, Reymann KG, Gluckman PD, Sieg F (2006) Neural regeneration protein is a novel chemoattractive and neuronal survival-promoting factor. Exp Cell Res 312:3060–3074

    Article  CAS  PubMed  Google Scholar 

  18. Singh AT, Keelan JA, Sieg F (2010) Regulation of trophoblast migration and survival by a novel neural regeneration peptide. Reprod Biomed Online 21:237–244

    Article  CAS  PubMed  Google Scholar 

  19. Marescaux C, Vergnes M, Depaulis A (1992) Genetic absence epilepsy in rats from Strasbourg—a review. J Neural Transm Suppl 35:37–69

    CAS  PubMed  Google Scholar 

  20. Jones NC, O’Brien TJ, Powell KL (2011) Morphometric changes and molecular mechanisms in rat models of idiopathic generalized epilepsy with absence seizures. Neurosci Lett 497:185–193

    Article  CAS  PubMed  Google Scholar 

  21. Tringham E, Powell KL, Cain SM, Kuplast K, Mezeyova J, Weerapura M, Eduljee C, Jiang X, Smith P, Morrison JL, Jones NC, Braine E, Rind G, Fee-Maki M, Parker D, Pajouhesh H, Parmar M, O’Brien TJ, Snutch TP (2012) T-type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures. Sci Transl Med 4:121ra119

    Article  Google Scholar 

  22. Sajadian A, Esteghamat S, Karimzadeh F, Eshaghabadi A, Sieg F, Speckmann EJ, Meuth S, Seidenbecher T, Budde T, Gorji A (2015) Anticonvulsant effect of neural regeneration peptide 2945 on pentylenetetrazol-induced seizures in rats. Neuropeptides 49:15–23

    Article  CAS  PubMed  Google Scholar 

  23. Kovacs Z, Dobolyi A, Juhasz G, Kekesi KA (2014) Lipopolysaccharide induced increase in seizure activity in two animal models of absence epilepsy WAG/Rij and GAERS rats and Long Evans rats. Brain Res Bull 104:7–18

    Article  CAS  PubMed  Google Scholar 

  24. Russo E, Andreozzi F, Iuliano R, Dattilo V, Procopio T, Fiume G, Mimmi S, Perrotti N, Citraro R, Sesti G, Constanti A, De Sarro G (2014) Early molecular and behavioral response to lipopolysaccharide in the WAG/Rij rat model of absence epilepsy and depressive-like behavior, involves interplay between AMPK, AKT/mTOR pathways and neuroinflammatory cytokine release. Brain Behav Immun 42:157–168

    Article  CAS  PubMed  Google Scholar 

  25. Powell KL, Tang H, Ng C, Guillemain I, Dieuset G, Dezsi G, Carcak N, Onat F, Martin B, O’Brien TJ, Depaulis A, Jones NC (2014) Seizure expression, behavior, and brain morphology differences in colonies of Genetic Absence Epilepsy Rats from Strasbourg. Epilepsia 55:1959–1968

    Article  PubMed  Google Scholar 

  26. Jones NC, Salzberg MR, Kumar G, Couper A, Morris MJ, O’Brien TJ (2008) Elevated anxiety and depressive-like behavior in a rat model of genetic generalized epilepsy suggesting common causation. Exp Neurol 209:254–260

    Article  PubMed  Google Scholar 

  27. Cermakian N, Westfall S, Kiessling S (2014) Circadian clocks and inflammation: reciprocal regulation and shared mediators. Arch Immunol Ther Exp 62:303–318

    Article  CAS  Google Scholar 

  28. Liu SJ, Zheng P, Wright DK, Dezsi G, Braine E, Nguyen T, Corcoran NM, Johnston LA, Hovens CM, Mayo JN, Hudson M, Shultz SR, Jones NC, O’Brien TJ (2016) Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2 A and hyperphosphorylated tau. Brain 139:1919–1938

    Article  PubMed  Google Scholar 

  29. Lee HK, Zhang L, Smith MD, White HS, Bulaj G (2009) Glycosylated neurotensin analogues exhibit sub-picomolar anticonvulsant potency in a pharmacoresistant model of epilepsy. ChemMedChem 4:400–405

    Article  PubMed  PubMed Central  Google Scholar 

  30. Luo Y, Lathia J, Mughal M, Mattson MP (2008) SDF1alpha/CXCR4 signaling, via ERKs and the transcription factor Egr1, induces expression of a 67-kDa form of glutamic acid decarboxylase in embryonic hippocampal neurons. J Biol Chem 283:24789–24800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Akin D, Ravizza T, Maroso M, Carcak N, Eryigit T, Vanzulli I, Aker RG, Vezzani A, Onat FY (2011) IL-1beta is induced in reactive astrocytes in the somatosensory cortex of rats with genetic absence epilepsy at the onset of spike-and-wave discharges, and contributes to their occurrence. Neurobiol Dis 44:259–269

    Article  CAS  PubMed  Google Scholar 

  32. van Luijtelaar G, Lyashenko S, Vastyanov R, Verbeek G, Oleinik A, van Rijn C, Volokhova G, Shandra A, Coenen A, Godlevsky L (2012) Cytokines and absence seizures in a genetic rat model. Neurophysiology 43:478–486

    Article  CAS  Google Scholar 

  33. Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, Zhang J, Ratajczak J, Ratajczak MZ (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35:233–245

    Article  CAS  PubMed  Google Scholar 

  34. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621

    Article  CAS  PubMed  Google Scholar 

  35. Banisadr G, Fontanges P, Haour F, Kitabgi P, Rostene W, Melik Parsadaniantz S (2002) Neuroanatomical distribution of CXCR4 in adult rat brain and its localization in cholinergic and dopaminergic neurons. Eur J Neurosci 16:1661–1671

    Article  PubMed  Google Scholar 

  36. Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C (1998) Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 55:27–57

    Article  CAS  PubMed  Google Scholar 

  37. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, Darnell RB, Ferrante RJ, Fillit H, Finkelstein R, Fisher M, Gendelman HE, Golub RM, Goudreau JL, Gross RA, Gubitz AK, Hesterlee SE, Howells DW, Huguenard J, Kelner K, Koroshetz W, Krainc D, Lazic SE, Levine MS, Macleod MR, McCall JM, Moxley RT 3rd, Narasimhan K, Noble LJ, Perrin S, Porter JD, Steward O, Unger E, Utz U, Silberberg SD (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490:187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the generous financial support from CURONZ for this study. NJ is supported by an ARC Future Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel C. Jones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dezsi, G., Sieg, F., Thomas, M. et al. Disease-Modifying Effects of Neural Regeneration Peptide 2945 in the GAERS Model of Absence Epilepsy. Neurochem Res 42, 2055–2064 (2017). https://doi.org/10.1007/s11064-017-2305-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2305-x

Keywords

Navigation