Skip to main content
Log in

Analysis of Motor Function in Amyloid Precursor-Like Protein 2 Knockout Mice: The Effects of Ageing and Sex

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The amyloid precursor protein (APP) is a member of a conserved gene family that includes the amyloid precursor-like proteins 1 (APLP1) and 2 (APLP2). APP and APLP2 share a high degree of similarity, and have overlapping patterns of spatial and temporal expression in the central and peripheral tissues, in particular at the neuromuscular junction. APP-family knockout (KO) studies have helped elucidate aspects of function and functional redundancy amongst the APP-family members. In the present study, we investigated motor performance of APLP2-KO mice and the effect sex differences and age-related changes have on motor performance. APLP2-KO and WT (on C57Bl6 background) littermates control mice from 8 (young adulthood) to 48 weeks (middle age) were investigated. Analysis of motor neuron and muscle morphology showed APLP2-KO females but not males, had less age-related motor function impairments. We observed age and sex differences in both motor neuron number and muscle fiber size distribution for APLP2-KO mice compared to WT (C57Bl6). These alterations in the motor neuron number and muscle fiber distribution pattern may explain why female APLP2-KO mice have far better motor function behaviour during ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

APLP1:

Amyloid precursor-like protein 1

APLP2:

Amyloid precursor-like protein 2

EDL:

Extensor digitorium longus

GA:

Gastrocnemius

OCT:

Optimal cutting temperature

PBS:

Phosphate buffered saline

PLA:

Plantaris

ROI:

Regions of interest

SOL:

Soleus

TA:

Tibialis anterior

WT:

Wildtype

References

  1. Wasco W, Bupp K, Magendantz M, Gusella JF, Tanzi RE, Solomon F (1992) Identification of a mouse-brain cdna that encodes a protein related to the Alzheimer disease-associated amyloid-beta-protein precursor. Proc Natl Acad Sci USA 89:10758–10762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wasco W, Gurubhagavatula S, Paradis MD, Romano DM, Sisodia SS, Hyman BT, Neve RL, Tanzi RE (1993) Isolation and characterization of APLP2 encoding a homologue of the Alzheimer’s associated amyloid beta protein precursor. Nat Genet 5:95–100

    Article  CAS  PubMed  Google Scholar 

  3. Needham BE, Wlodek ME, Ciccotosto GD, Fam BC, Masters CL, Proietto J, Andrikopoulos S, Cappai R (2008) Identification of the Alzheimer’s disease amyloid precursor protein (APP) and its homologue APLP2 as essential modulators of glucose and insulin homeostasis and growth. J Pathol 215:155–163

    Article  CAS  PubMed  Google Scholar 

  4. Nalivaeva NN, Turner AJ (2013) The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett 587:2046–2054

    Article  CAS  PubMed  Google Scholar 

  5. Dawkins E, Small DH (2014) Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer’s disease. J Neurochem 129:756–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Müller UC, Deller T, Korte M (2017) Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 18:281

    Article  CAS  PubMed  Google Scholar 

  7. Yang G, Gong YD, Gong K, Jiang WL, Kwon E, Wang P, Zheng H, Zhang XF, Gan WB, Zhao NM (2005) Reduced synaptic vesicle density and active zone size in mice lacking amyloid precursor protein (APP) and APP-like protein 2. Neurosci Lett 384:66–71

    Article  CAS  PubMed  Google Scholar 

  8. Wang B, Yang L, Wang Z, Zheng H (2007) Amyolid precursor protein mediates presynaptic localization and activity of the high-affinity choline transporter. Proc Natl Acad Sci USA 104:14140–14145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor CJ, Ireland DR, Ballagh I, Bourne K, Marechal NM, Turner PR, Bilkey DK, Tate WP, Abraham WC (2008) Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiol Dis 31:250–260

    Article  CAS  PubMed  Google Scholar 

  10. Midthune B, Tyan SH, Walsh JJ, Sarsoza F, Eggert S, Hof PR, Dickstein DL, Koo EH (2012) Deletion of the amyloid precursor-like protein 2 (APLP2) does not affect hippocampal neuron morphology or function. Mol Cell Neurosci 49:448–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klevanski M, Saar M, Baumkotter F, Weyer SW, Kins S, Muller UC (2014) Differential role of APP and APLPs for neuromuscular synaptic morphology and function. Mol Cell Neurosci 61:201–210

    Article  CAS  PubMed  Google Scholar 

  12. Weyer SW, Zagrebelsky M, Herrmann U, Hick M, Ganss L, Gobbert J, Gruber M, Altmann C, Korte M, Deller T, Muller UC (2014) Comparative analysis of single and combined APP/APLP knockouts reveals reduced spine density in APP-KO mice that is prevented by APPsalpha expression. Acta Neuropathol Commun 2:36

    Article  PubMed  PubMed Central  Google Scholar 

  13. von Koch CS, Zheng H, Chen H, Trumbauer M, Thinakaran G, van der Ploeg LH, Price DL, Sisodia SS (1997) Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol Aging 18:661–669

    Article  Google Scholar 

  14. Zheng H, Jiang M, Trumbauer ME, Sirinathsinghji DJ, Hopkins R, Smith DW, Heavens RP, Dawson GR, Boyce S, Conner MW, Stevens KA, Slunt HH, Sisoda SS, Chen HY, Van der Ploeg LH (1995) b-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81:525–531

    Article  CAS  PubMed  Google Scholar 

  15. Senechal Y, Kelly PH, Dev KK (2008) Amyloid precursor protein knockout mice show age-dependent deficits in passive avoidance learning. Behav Brain Res 186:126–132

    Article  CAS  PubMed  Google Scholar 

  16. Corrigan F, Vink R, Blumbergs PC, Masters CL, Cappai R, van den Heuvel C (2012) sAPPalpha rescues deficits in amyloid precursor protein knockout mice following focal traumatic brain injury. J Neurochem 122:208–220

    Article  CAS  PubMed  Google Scholar 

  17. Hefter D, Kaiser M, Weyer SW, Papageorgiou IE, Both M, Kann O, Muller UC, Draguhn A (2016) Amyloid precursor protein protects neuronal network function after hypoxia via control of voltage-gated calcium channels. J Neurosci 36:8356–8371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heber S, Herms J, Gajic V, Hainfellner J, Aguzzi A, Rulicke T, von Kretzschmar H, von Koch C, Sisodia S, Tremml P, Lipp HP, Wolfer DP, Muller U (2000) Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J Neurosci 20:7951–7963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Herms J, Anliker B, Heber S, Ring S, Fuhrmann M, Kretzschmar H, Sisodia S, Muller U (2004) Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. EMBO J 23:4106–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barreto G, Huang TT, Giffard RG (2010) Age-related defects in sensorimotor activity, spatial learning, and memory in C57BL/6 mice. J Neurosurg Anesthesiol 22:214–219

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simen AA, Bordner KA, Martin MP, Moy LA, Barry LC (2011) Cognitive dysfunction with aging and the role of inflammation. Ther Adv Chronic Dis 2:175–195

    Article  PubMed  PubMed Central  Google Scholar 

  23. Keller K, Engelhardt M (2013) Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J 3:346–350

    Article  PubMed  Google Scholar 

  24. Shoji H, Takao K, Hattori S, Miyakawa T (2016) Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain 9:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lance-Jone C (1982) Motoneuron cell death in the developing lumbar spinal cord of the mouse. Brain Res 4:473–479

    Article  Google Scholar 

  26. Friese A, Kaltschmidt JA, Ladle DR, Sigrist M, Jessell TM, Arber S (2009) Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proc Natl Acad Sci USA 106:13588–13593

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eccles JC, Eccles RM, Iggo A, Lundberg A (1960) Electrophysiological studies on gamma motoneurones. Acta Physiol Scand 50:32–40

    Article  CAS  PubMed  Google Scholar 

  28. Burke RE, Strick PL, Kanda K, Kim CC, Walmsley B (1977) Anatomy of medial gastrocnemius and soleus motor nuclei in cat spinal cord. J Neurophysiol 40:667–680

    Article  CAS  PubMed  Google Scholar 

  29. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531

    Article  CAS  PubMed  Google Scholar 

  30. Dean RL, Scozzafava J, Goas JA, Regan B, Beer B, Bartus RT (1981) Age-related differences in behavior across the life-span of the C57bl 6j mouse. Exp Aging Res 7:427–451

    Article  PubMed  Google Scholar 

  31. Benice TS, Rizk A, Kohama S, Pfankuch T, Raber J (2006) Sex-differences in age-related cognitive decline in C57BL/6J mice associated with increased brain microtubule-associated protein 2 and synaptophysin immunoreactivity. Neuroscience 137:413–423

    Article  CAS  PubMed  Google Scholar 

  32. Fahlstrom A, Yu Q, Ulfhake B (2011) Behavioral changes in aging female C57BL/6 mice. Neurobiol Aging 32:1868–1880

    Article  PubMed  Google Scholar 

  33. Kovacs AD, Pearce DA (2013) Location and sex specific differences in weight and motor coordination in two commonly used mouse strains. Sci Rep 3:2116

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ashworth A, Bardgett ME, Fowler J, Garber H, Griffith M, Curran CP (2015) Comparison of neurological function in males and females from two substrains of C57BL/6 mice. Toxics 3:1–17

    Article  CAS  PubMed  Google Scholar 

  35. Tucker LB, Fu AH, McCabe JT (2016) Performance of male and female C57BL/6J mice on motor and cognitive tasks commonly used in pre-clinical traumatic brain injury research. J Neurotrauma 33:880–894

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ober C, Loisel DA, Gilad Y (2008) Sex-specific genetic architecture of human disease. Nat Rev Genet 9:911–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meziane H, Ouagazzal AM, Aubert L, Wietrzych M, Krezel W (2007) Estrous cycle effects on behavior of C57BL/6J and BALB/cByJ female mice: implications for phenotyping strategies. Genes Brain Behav 6:192–200

    Article  CAS  PubMed  Google Scholar 

  38. Aguiar AS Jr, Speck AE, Amaral IM, Canas PM, Cunha RA (2018) The exercise sex gap and the impact of the estrous cycle on exercise performance in mice. Sci Rep 8:10742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O’Connor CA, Cernak I, Vink R (2003) Interaction between anesthesia, gender, and functional outcome task following diffuse traumatic brain injury in rats. J Neurotraum 20:533–541

    Article  Google Scholar 

  40. Wagner AK, Willard LA, Kline AE, Wenger MK, Bolinger BD, Ren D, Zafonte RD, Dixon CE (2004) Evaluation of estrous cycle stage and gender on behavioral outcome after experimental traumatic brain injury. Brain Res 998:113–121

    Article  CAS  PubMed  Google Scholar 

  41. Monaco CM, Mattiola VV, Folweiler KA, Tay JK, Yelleswarapu NK, Curatolo LM, Matter AM, Cheng JP, Kline AE (2013) Environmental enrichment promotes robust functional and histological benefits in female rats after controlled cortical impact injury. Exp Neurol 247:410–418

    Article  PubMed  PubMed Central  Google Scholar 

  42. Monti RJ, Roy RR, Edgerton VR (2001) Role of motor unit structure in defining function. Muscle Nerve 24:848–866

    Article  CAS  PubMed  Google Scholar 

  43. Sheth KA, Iyer CC, Wier CG, Crum AE, Bratasz A, Kolb SJ, Clark BC, Burghes AHM, Arnold WD (2018) Muscle strength and size are associated with motor unit connectivity in aged mice. Neurobiol Aging 67:128–136

    Article  PubMed  PubMed Central  Google Scholar 

  44. Manuel M, Zytnicki D (2011) Alpha, beta and gamma motoneurons: functional diversity in the motor system’s final pathway. J Integr Neurosci 10:243–276

    Article  PubMed  Google Scholar 

  45. Valdez G, Tapia JC, Kang H, Clemenson GD Jr, Gage FH, Lichtman JW, Sanes JR (2010) Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci USA 107:14863–14868

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chai RJ, Vukovic J, Dunlop S, Grounds MD, Shavlakadze T (2011) Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS ONE 6:e28090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chung T, Park JS, Kim S, Montes N, Walston J, Hoke A (2017) Evidence for dying-back axonal degeneration in age-associated skeletal muscle decline. Muscle Nerve 55:894–901

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tomlinson BE, Irving D (1977) The numbers of limb motor neurons in the human lumbosacral cord throughout life. J Neurol Sci 34:213–219

    Article  CAS  PubMed  Google Scholar 

  49. Jacob JM (1998) Lumbar motor neuron size and number is affected by age in male F344 rats. Mech Ageing Dev 106:205–216

    Article  CAS  PubMed  Google Scholar 

  50. Maxwell N, Castro RW, Sutherland NM, Vaughan KL, Szarowicz MD, de Cabo R, Mattison JA, Valdez G (2018) α-Motor neurons are spared from aging while their synaptic inputs degenerate in monkeys and mice. Aging cell 17:e12726

    Article  CAS  PubMed Central  Google Scholar 

  51. Kovačič U, Sketelj J, Bajrović FF (2009) Sex-related differences in recovery of cutaneous nociception after end-to-side nerve repair in the rat. J Plast Reconstr Aesthet Surg 62:806–813

    Article  PubMed  Google Scholar 

  52. White Z, Terrill J, White RB, McMahon C, Sheard P, Grounds MD, Shavlakadze T (2016) Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice. Skelet Muscle 6:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wasco W, Gurubhagavatula S, Paradis MD, Romano DM, Sisodia SS, Hyman BT, Neve RL, Tanzi RE (1993) Isolation and characterization of APLP2 encoding a homologue of the Alzheimer’s associated amyloid b protein precursor. Nat Genet 5:95–100

    Article  CAS  PubMed  Google Scholar 

  54. Weyer SW, Klevanski M, Delekate A, Voikar V, Aydin D, Hick M, Filippov M, Drost N, Schaller KL, Saar M, Vogt MA, Gass P, Samanta A, Jaschke A, Korte M, Wolfer DP, Caldwell JH, Muller UC (2011) APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP. EMBO J 30:2266–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lassek M, Weingarten J, Einsfelder U, Brendel P, Muller U, Volknandt W (2013) Amyloid precursor proteins are constituents of the presynaptic active zone. J Neurochem 127:48–56

    CAS  PubMed  Google Scholar 

  56. Korte M, Herrmann U, Zhang X, Draguhn A (2012) The role of APP and APLP for synaptic transmission, plasticity, and network function: lessons from genetic mouse models. Exp Brain Res 217:435–440

    Article  CAS  PubMed  Google Scholar 

  57. Zhang X, Herrmann U, Weyer SW, Both M, Muller UC, Korte M, Draguhn A (2013) Hippocampal network oscillations in APP/APLP2-deficient mice. PLoS ONE 8:e61198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Akaaboune M, Allinquant B, Farza H, Roy K, Magoul R, Fiszman M, Festoff BW, Hantai D (2000) Developmental regulation of amyloid precursor protein at the neuromuscular junction in mouse skeletal muscle. Mol Cell Neurosci 15:355–367

    Article  CAS  PubMed  Google Scholar 

  59. Wang P, Yang G, Mosier DR, Chang P, Zaidi T, Gong YD, Zhao NM, Dominguez B, Lee KF, Gan WB, Zheng H (2005) Defective neuromuscular synapses in mice lacking amyloid precursor protein (APP) and APP-Like protein 2. J Neurosci 25:1219–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Deschenes MR, Roby MA, Eason MK, Harris MB (2010) Remodeling of the neuromuscular junction precedes sarcopenia related alterations in myofibers. Exp Gerontol 45:389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mantilla CB, Sieck GC (2011) Age-related remodeling of neuromuscular junctions. In: Sarcopenia age related muscle wasting and weakness. Springer, New York pp 37–54

    Chapter  Google Scholar 

  62. Arnold A-S, Gill J, Christe M, Ruiz R, McGuirk S, St-Pierre J, Tabares L, Handschin C (2014) Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α. Nat Commun 5:3569

    Article  CAS  PubMed  Google Scholar 

  63. Li Y, Lee YI, Thompson WJ (2011) Changes in aging mouse neuromuscular junctions are explained by degeneration and regeneration of muscle fiber segments at the synapse. J Neurosci 31:14910–14919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hepple RT, Rice CL (2016) Innervation and neuromuscular control in ageing skeletal muscle. J Physiol 594:1965–1978

    Article  CAS  PubMed  Google Scholar 

  65. Muller U, Cristina N, Li ZW, Wolfer DP, Lipp HP, Rulicke T, Brandner S, Aguzzi A, Weissmann C (1994) Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell 79:755–765

    Article  CAS  PubMed  Google Scholar 

  66. Ludewig S, Korte M (2017) Novel insights into the physiological function of the APP (gene) family and its proteolytic fragments in synaptic plasticity. Front Mol Neurosci 9:161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by National Health and Medical Research Council of Australia to RC. PHT was a recipient of a Nancy Frances Curry PhD Scholarship. We thank the School of Biomedical Sciences animal facility staff for assisting with animal care and handling, and the School of Biomedical Sciences Histology Facility for its resources. We thank Paul Kennedy, Alfred Health, for their assistance with the ATPase staining protocol. We thank Prof Sangram Sisodia for the APLP2 knockout mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cappai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Special issue: In honor of Prof. Anthony J. Turner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, P.H., Ciccotosto, G.D. & Cappai, R. Analysis of Motor Function in Amyloid Precursor-Like Protein 2 Knockout Mice: The Effects of Ageing and Sex. Neurochem Res 44, 1356–1366 (2019). https://doi.org/10.1007/s11064-018-2669-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2669-6

Keywords

Navigation