Skip to main content

Advertisement

Log in

Cannabinoid Type 1 Receptors in the Basolateral Amygdala Regulate ACPA-Induced Place Preference and Anxiolytic-Like Behaviors

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The number of cannabis users is increasing in the world. However, the mechanisms involved in the psychiatric effects and addiction formation remain unclear. Medical treatments against cannabis addiction have not yet been established. Δ9-Tetrahydrocannabinol (THC), the main active substance in cannabis, binds and affects cannabinoid type 1 receptors (CB1R) in the brain. The mice were intraperitoneally (i.p.) administered arachidonylcyclopropylamide (ACPA), a CB1R-selective agonist, and then two behavioral experiments on anxiety and addiction were performed. Administration of ACPA caused anxiolytic-like behavior in the elevated plus maze test. In addition, ACPA increased place preference in a conditioned place preference (CPP) test. The basolateral amygdala (BLA), which is the focus of this study, is involved in anxiety-like behavior and reward and is reported to express high levels of CB1R. We aimed to reveal the role of CB1R in BLA for ACPA-induced behavior. AM251, a CB1R selective antagonist, was administered intra-BLA before i.p. administration of ACPA. Intra-BLA administration of AM251 inhibited ACPA-induced anxiolytic-like behavior and place preference. These results suggest that CB1R in the BLA contributes to behavior disorders caused by the acute or chronic use of cannabis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data presented in this manuscript are available upon request from the corresponding authors on reasonable request.

References

  1. Cohen K, Weizman A, Weinstein A (2019) Positive and negative effects of cannabis and cannabinoids on health. Clin Pharmacol Ther 105:1139–1147. https://doi.org/10.1002/cpt.1381

    Article  PubMed  Google Scholar 

  2. Whiting PF, Wolff RF, Deshpande S, Nisio MD, Duffy S, Hernandez AV, Keurentjes JC, Lang SL, Misso K, Ryder S, Schmidlkofer S, Westwood M, Kleijnen J (2015) Cannabinoids for medical use: a systematic review and meta-analysis. JAMA 313:2456–2473. https://doi.org/10.1001/jama.2015.6358

    Article  CAS  PubMed  Google Scholar 

  3. Koppel BS, Brust JC, Fife T, Bronstein J, Youssof S, Gronseth G, Gloss D (2014) Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 82:1556–1563. https://doi.org/10.1212/WNL.0000000000000363

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sachs J, McGlade E, Yurgelun-Todd D (2015) Safety and toxicology of cannabinoids. Neurotherapeutics 12:735–746. https://doi.org/10.1007/s13311-015-0380-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zammit S, Allebeck P, Andreasson S, Lundberg I, Lewis G (2002) Self-reported cannabis use as a risk factor for schizophrenia in Swedish conscripts of 1969: historical cohort study. BMJ 325:1199. https://doi.org/10.1136/bmj.325.7374.1199

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bally N, Zullino D, Aubry J (2014) Cannabis use and first manic episode. J Affect Disord 165:103–108. https://doi.org/10.1016/j.jad.2014.04.038

    Article  PubMed  Google Scholar 

  7. Gibbs M, Winsper C, Marwaha S, Gilbert E, Broome M, Singh SP (2015) Cannabis use and mania symptoms: a systematic review and meta-analysis. J Affect Disord 171:39–47. https://doi.org/10.1016/j.jad.2014.09.016

    Article  PubMed  Google Scholar 

  8. Zehra A, Burns J, Liu CK, Manza P, Wiers CE, Volkow ND, Wang G (2018) Cannabis addiction and the brain: a review. J Neuroimmune Pharmacol 13:438–452. https://doi.org/10.1007/s11481-018-9782-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Demuth DG, Molleman A (2006) Cannabinoid signalling. Life Sci 78:549–563. https://doi.org/10.1016/j.lfs.2005.05.055

    Article  CAS  PubMed  Google Scholar 

  10. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564. https://doi.org/10.1038/346561a0

    Article  CAS  PubMed  Google Scholar 

  11. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of peripheral receptor for cannabis. Nature 365:61–65. https://doi.org/10.1038/365061a0

    Article  CAS  PubMed  Google Scholar 

  12. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583. https://doi.org/10.1523/JNEUROSCI.11-02-00563.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsou K, Brown S, Sanudo-peña MC, Walker JM (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393–411. https://doi.org/10.1016/S0306-4522(97)00436-3

    Article  CAS  PubMed  Google Scholar 

  14. Lutz B (2020) Neurobiology of cannabinoid receptor signaling. Dialogues Clin Neurosci 22:207–222. https://doi.org/10.31887/DCNS.2020.22.3/blutz

    Article  PubMed  PubMed Central  Google Scholar 

  15. Katona I, Sperlágh B, Sík A, Käfalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558. https://doi.org/10.1523/JNEUROSCI.19-11-04544.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Monory K, Massa F, Egertova M, Egertová M, Eder M, Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M, Jason L, Rubenstein JL, Goebbels S, Nave K, During M, Klugmann M, Wölfel B, Dodt H, Lutz B (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51:455–466. https://doi.org/10.1016/j.neuron.2006.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11:4213–4225. https://doi.org/10.1046/j.1460-9568.1999.00847.x

    Article  CAS  PubMed  Google Scholar 

  18. Katona I, Urbán GM, Wallace M, Wallace M, Ledent C, Jung K, Piomelli D, Mackie K, Freund TF (2006) Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 26:5628–5637. https://doi.org/10.1523/JNEUROSCI.0309-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baxter MG, Murray EA (2002) The amygdala and reward. Nat Rev Neurosci 3:563–573. https://doi.org/10.1038/nrn875

    Article  CAS  PubMed  Google Scholar 

  20. McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55:257–332. https://doi.org/10.1016/S0301-0082(98)00003-3

    Article  CAS  PubMed  Google Scholar 

  21. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184. https://doi.org/10.1146/annurev.neuro.23.1.155

    Article  CAS  PubMed  Google Scholar 

  22. Tye KM, Stuber GD, de Ridder B, Bonci A, Janak PH (2008) Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning. Nature 453:1253–1257. https://doi.org/10.1038/nature06963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kobb GF, Volkoe ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238. https://doi.org/10.1038/npp.2009.110

    Article  Google Scholar 

  24. Filbey FM, Dunlop J, Myers US (2013) Neural effects of positive and negative incentives during marijuana withdrawal. PLoS ONE. https://doi.org/10.1371/journal.pone.0061470

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heitzeg MM, Cope LM, Martz ME, Hardee JE, Zucker RA (2015) Brain activation to negative stimuli mediates a relationship between adolescent marijuana use and later emotional functioning. Dev Cogn Neurosci 16:71–83. https://doi.org/10.1016/j.dcn.2015.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  26. Spechler PA, Orr CA, Chaarani B, Kan KJ, Mackey S, Morton A, Snowe MP, Hudson KE, Althoff RR, Higgins ST, Cattrell A, Flor H, Nees F, Banaschewski T, Bokde ALW, Whelan R, Büchel C, Bromberg U, Conrod P, Frouin V, Papadopoulos D, Gallinat J, Heinz A, Walter H, Ittermann B, Gowland P, Paus T, Poustka L, Martinot JL, Artiges E, Smolka MN, Schumann G, IMAGEN Consortium (2015) Cannabis use in early adolescence: evidence of amygdala hypersensitivity to signals of threat. Dev Cogn Neurosci 16:63–70. https://doi.org/10.1016/j.dcn.2015.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wassum KM, Izuquierdo A (2015) The basolateral amygdala in reward learning and addiction. Neurosci Biobehav Rev 57:271–283. https://doi.org/10.1016/j.neubiorev.2015.08.017

    Article  PubMed  PubMed Central  Google Scholar 

  28. Janak PH, Tye KM (2015) From circuits to behaviour in the amygdala. Nature 517:284–292. https://doi.org/10.1038/nature14188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Babaev O, Chatain CP, Krueger-burg D (2018) Inhibition in the amygdala anxiety circuitry. Exp Mol Med 50:18. https://doi.org/10.1038/s12276-018-0063-8

    Article  CAS  PubMed Central  Google Scholar 

  30. Katona I, Rancz EA, Acsády L, Ledent C, Mackie K, Hájos N, Freund T (2001) Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci 21(23):9506–9518. https://doi.org/10.1523/JNEUROSCI.21-23-09506.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kamprath K, Romo-Parra H, Häring M, Gaburro S, Doengi M, Lutz B, Pape HC (2011) Short-term adaptation of conditioned fear responses through endocannabinoid signaling in the central amygdala. Neuropsychopharmacology 36:652–663. https://doi.org/10.1038/npp.2010.196

    Article  CAS  PubMed  Google Scholar 

  32. Lange MD, Daldrup T, Remmers F, Szkudlarek HJ, Lesting J, Guggenhuber S, Ruehle S, Jüngling K, Seidenbecher T, Lutz B, Pape HC (2017) Cannabinoid CB1 receptors in distinct circuits of the extended amygdala determine fear responsiveness to unpredictable threat. Mol Psychiatry 22:1422–1430. https://doi.org/10.1038/mp.2016.156

    Article  CAS  PubMed  Google Scholar 

  33. Pertwee RG (2006) The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes. https://doi.org/10.1038/sj.ijo.0803272

    Article  Google Scholar 

  34. Nasehi M, Sharaf-Dolgari E, Embrahimi-Ghiri M, Zarrindast M (2015) The hippocampal NMDA receptors may be involved in acquisition, but not expression of ACPA-induced place preference. Progr Neuro-Psychopharmacol Biol Psychiatry 63:83–90. https://doi.org/10.1016/j.pnpbp.2015.06.004

    Article  CAS  Google Scholar 

  35. Ikeda H, Ikegami M, Kai M, Kamei J (2015) Cannabinoid functions in the amygdala contribute to conditioned fear memory in streptozotocin-induced diabetic mice: interaction with glutamatergic functions. Exp Neurol 269:233–241. https://doi.org/10.1016/j.expneurol.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  36. Miyamoto Y, Noda Y, Komori Y, Sugihara H, Furukawa H, Nabeshima T (2000) Involvement of nitric oxide in phencyclidine-induced place aversion and preference in mice. Behav Brain Res 116:187–196. https://doi.org/10.1016/S0166-4328(00)00274-6

    Article  CAS  PubMed  Google Scholar 

  37. Miyamoto Y, Iida A, Sato K, Muramatsu S, Nitta A (2015) Knockdown of dopamine D2 receptors in the nucleus accumbens core suppresses methamphetamine-induced behaviors and signal transduction in mice. Int J Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyu038

    Article  PubMed Central  Google Scholar 

  38. Fu K, Miyamoto Y, Sumi K, Saika E, Muramatsu S, Uno K, Nitta A (2017) Overexpression of transmembrane protein 168 in the mouse nucleus accumbens induces anxiety and sensorimotor gating deficit. PLoS ONE. https://doi.org/10.1371/journal.pone.0189006

    Article  PubMed  PubMed Central  Google Scholar 

  39. Miyanishi H, Muramatsu S, Nitta A (2021) Striatal Shati/Nat8l–BDNF pathways determine the sensitivity to social defeat stress in mice through epigenetic regulation. Neuropsychopharmacology 46:1594–1605. https://doi.org/10.1038/s41386-021-01033-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paxinos G, Franklin K (2008) The mouse brain in stereotaxic coordinates: compact, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  41. Jordan C, Xi ZX (2019) Progress in brain cannabinoid CB2 receptor research: from genes to behavior. Neurosci Biobehav Rev 98:208–202. https://doi.org/10.1016/j.neubiorev.2018.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lepore M, Vorel SR, Lowinson J, Gardner EL (1995) Conditioned place preference induced by Δ9-tetrahydrocannbinol: comparison with cocaine, morphine, and food reward. Life Sci 56:2073–2080. https://doi.org/10.1016/0024-3205(95)00191-8

    Article  CAS  PubMed  Google Scholar 

  43. Kangarlu-Haghighi K, Oryan S, Nasehi M, Zarrindast M (2015) The effect of BLA GABAA receptor in anxiolytic-like effect and aversive memory deficit induced by ACPA. EXCLI J 14:613–626. https://doi.org/10.17179/excli2015-201

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chegini H, NasehiZarrindast M (2014) Differential role of the basolateral amygdala 5-HT3 and 5-HT4 serotonin receptors upon ACPA-induced anxiolytic-like behaviors and emotional memory deficit in mice. Behav Brain Res 261:114–126. https://doi.org/10.1016/j.bbr.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  45. Onavi ES, Green MR, Martin BR (1990) Pharmacological characterization of cannabinoids in the elevated plus maze. J Pharmacol Exp Ther 253:1002–1009

    Google Scholar 

  46. Berrendero F, Maldonado R (2002) Involvement of the opioid system in the anxiolytic-like effects induced by Δ9-tetrahydrocannabinol. Psychopharmacology 163:111–117. https://doi.org/10.1007/s00213-002-1144-9

    Article  CAS  PubMed  Google Scholar 

  47. Rubino T, Sala M, Viganò D, Braida D, Castiglioni C, Lirmonta V, Guidali C, Realini N, Parolaro D (2007) Cellular mechanisms underlying the anxiolytic effect of low doses of peripheral Δ9-tetrahydrocannabinol in rats. Neuropsychopharmacology 32:2036–2045. https://doi.org/10.1038/sj.npp.1301330

    Article  CAS  PubMed  Google Scholar 

  48. Shel H, Terrett G, Greenwood LM, Kowalczyk M, Thomson H, Poudel G, Manning V, Lorenzetti V (2021) Patterns of brain function associated with cannabis cue-reactivity in regular cannabis users: a systematic review of fMRI studies. Psychopharmacology 238:2709–2728. https://doi.org/10.1007/s00213-021-05973-x

    Article  CAS  Google Scholar 

  49. Claus ED, Ewing SW, Filbey FM, Sabbineni A, Hutchison KE (2011) Identifying neurobiological phenotypes associated with alcohol use disorder severity. Neuropsychopharmacology 36:2086–2096. https://doi.org/10.1038/npp.2011.99

    Article  PubMed  PubMed Central  Google Scholar 

  50. Meil WM, See RE (1997) Lesions of the basolateral amygdala abolish the ability of drug associated cues to reinstate responding during withdrawal from self-administered cocaine. Behav Brain Res 87:139–148. https://doi.org/10.1016/S0166-4328(96)02270-X

    Article  CAS  PubMed  Google Scholar 

  51. Bissiere S, Humeau Y, Luthi A (2003) Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat Neurosci 6:587–592. https://doi.org/10.1038/nn1058

    Article  CAS  PubMed  Google Scholar 

  52. Woodruff AR, Sah P (2007) Inhibition and synchronization of basal amygdala principal neuron spiking by parvalbumin-positive interneurons. J Neurophysiol 98:2956–2961. https://doi.org/10.1152/jn.00739.2007

    Article  PubMed  Google Scholar 

  53. Zarrindast M, Ahmadi S, Haeri-Rohani A, Rezayof A, Jafari M, Jafari-Sabet M (2004) GABAA receptors in the basolateral amygdala are involved in mediating morphine reward. Brain res 1006:49–58. https://doi.org/10.1016/j.brainres.2003.12.048

    Article  CAS  PubMed  Google Scholar 

  54. Diehl GW, Wachtel JM, Paine TA (2013) Cue-induced conditioned activity does not incubate but is mediated by the basolateral amygdala. Pharmacol Biochem Behav 104:69–79. https://doi.org/10.1016/j.pbb.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  55. Crombag HS, Bossert JM, Koya E, Shaham Y (2008) Review. Context-induced relapse to drug seeking: a review. Philos Trans R Soc Lond B 363:3233–3243. https://doi.org/10.1098/rstb.2008.0090

    Article  Google Scholar 

  56. Vinklerova J, Novakova J, Sulcova A (2002) Inhibition of methamphetamine self-administration rats by cannabinoid receptor antagonist AM251. Psychopharmacology 16:139–143. https://doi.org/10.1177/026988110201600204

    Article  CAS  Google Scholar 

  57. Schindler CW, Panlilio LV, Gilman ZJ, Vemuri VK, Makriyannis A, Goldberg SR (2010) Effects of cannabinoid receptor antagonists on maintenance and reinstatement of methamphetamine self-administration in rhesus monkeys. Eur J Pharmacol 633:44–49. https://doi.org/10.1016/j.ejphar.2010.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guiffrida A, Parsons LH, Kerr TM, de Fonseca R, Navarro M, Piomelli D (1999) Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 2:358–363. https://doi.org/10.1038/7268

    Article  Google Scholar 

  59. Centonze D, Battista N, Rossi S, Mercuri NB, Finazzi-Agro A, Bernardi G, Calabresi P, Maccarrone M (2004) A critical interaction between dopamine D2 receptors and endocannabinoids mediates the effects of cocaine on striatal GABAergic transmission. Neuropsychopharmacology 29:1488–1497. https://doi.org/10.1038/sj.npp.1300458

    Article  CAS  PubMed  Google Scholar 

  60. Lutz B, Marsicano G, Maldonado R, Hillard CJ (2015) The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 16:705–718. https://doi.org/10.1038/nrn4036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Saugy M, Avois L, Saudan C, Robinson N, Giroud C, Mangin P, Dvorak J (2006) Cannabis and sport. Br J Sports Med 40:13–15. https://doi.org/10.1136/bjsm.2006.027607

    Article  Google Scholar 

  62. Sharpe L, Sinclair J, Kramer A, de Manincor M, Sarris J (2020) Cannabis, a cause for anxiety? A critical appraisal of the anxiogenic and anxiolytic properties. J Transl Med. https://doi.org/10.1186/s12967-020-02518-2

    Article  PubMed  PubMed Central  Google Scholar 

  63. McDonald AJ, Mascagni F (2001) Localization of the CB1 type cannabinoid receptor in the rat basolateral amygdala: high concentrations in a subpopulation of cholecystokinin-containing interneurons. Neuroscience 107:641–652. https://doi.org/10.1016/S0306-4522(01)00380-3

    Article  CAS  PubMed  Google Scholar 

  64. Shindo S, Yoshioka N (2005) Polymorphisms of the cholecystokinin gene promoter region in suicide victims in Japan. Forensic Sci Int 150:85–90. https://doi.org/10.1016/j.forsciint.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  65. Berna MJ, Tapia TA, Sancho V, Jensen RT (2007) Progress in developing cholecystokinin (CCK)/gastrin receptor ligands that have therapeutic potential. Curr Opin Pharmacol 7:583–592. https://doi.org/10.1016/j.coph.2007.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rotzinger S, Lovejoy DA, Tan LA (2010) Behavioral effects of neuropeptides in rodent models of depression and anxiety. Peptides 31:736–756. https://doi.org/10.1016/j.peptides.2009.12.015

    Article  CAS  PubMed  Google Scholar 

  67. Frankland PW, Josselyn SA, Bradwejn J, Vaccarino FJ, Yeomans JS (1997) Activation of amygdala cholecystokininB receptors potentiates the acoustic startle response in the rat. J Neurosci 17:1838–1847. https://doi.org/10.1523/JNEUROSCI.17-05-01838.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Boca CD, Lutz PE, Le Merrer J, Koebel P, Kieffer BL (2012) Cholecystokinin knock-down in the basolateral amygdala has anxiolytic and antidepressant-like effects in mice. Neuroscience 218:185–195. https://doi.org/10.1016/j.neuroscience.2012.05.022

    Article  CAS  PubMed  Google Scholar 

  69. Prager EM, Bergstrom HC, Wynn GH, Braga MF (2016) The basolateral amygdala GABAergic system in health and disease. J Neurosci Res. https://doi.org/10.1002/jnr.23690

    Article  PubMed  PubMed Central  Google Scholar 

  70. Barbalho CA, Nunes-de-Souza RL, Canto-de-Souza A (2009) Similar anxiolytic-like effects following intra-amygdala infusions of benzodiazepine receptor agonist and antagonist: evidence for the release of an endogenous benzodiazepine inverse agonist in mice exposed to elevated plus-maze test. Brain Res 1267:65–76. https://doi.org/10.1016/j.brainres.2009.02.042

    Article  CAS  PubMed  Google Scholar 

  71. Varodayan FP, Bajo M, Soni N, Luu G, Madamba SG, Schweitzer P, Roberto M (2016) Chronic alcohol exposure disrupts CB1 regulation of GABAergic transmission in the rat basolateral amygdala. Addict Biol 22:766–778. https://doi.org/10.1111/adb.12369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof Satoshi Morimoto, Kyusyu University, for supplying THC for pre-study.

Funding

This work was supported by the Grant-in-aid for Scientific Research (KAKENHI) (B) [JSPS KAKENHI JP21H02632], JP22J11998, JP16H06276 (AdAMS) from the Japan Society for the Promotion of Science, Kobayashi Foundation, and SRF Grant for Biomedical Research and Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the conception and design of the study. Material preparation, data collection and analysis were performed by TT, TA, and SN. The first manuscript was written by TT and HM. AN revised the manuscript to the final version. All the authors commented on the previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Atsumi Nitta.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Animal experimental protocols were by the animal Care and Use Committee of the University of Toyama (Approval Number: A2020PHA14) and conducted in accordance with the Institutional Animal Experiment Handling Rules of the University of Toyama. The number of animals used was carefully estimated and kept to the minimum necessary for meaningful interpretation of the data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokutake, T., Asano, T., Miyanishi, H. et al. Cannabinoid Type 1 Receptors in the Basolateral Amygdala Regulate ACPA-Induced Place Preference and Anxiolytic-Like Behaviors. Neurochem Res 47, 2899–2908 (2022). https://doi.org/10.1007/s11064-022-03708-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03708-8

Keywords

Navigation