Skip to main content

Advertisement

Log in

Neurobiological Markers of Illness Onset in Psychosis and Schizophrenia: The Search for a Moving Target

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

In this review, we describe neuropsychological and brain imaging findings in the early stages of psychosis and schizophrenia. We focus on recent clinical high-risk studies and consider whether the evidence supports these as ‘endophenotypes’ of a vulnerability to the illness or as ‘biomarkers’ of illness onset and transition. The findings suggest that there are a number of processes at psychosis onset that may represent biomarkers of incipient illness. These neurobiological indices particularly implicate the integrity of frontal and temporal cortices, which may or may not be related to the genetics of psychosis (i.e. potential ‘endophenotypes’). However, these brain regions are dynamically changing during normal maturation, meaning that any putative neurobiological markers identified at the earliest stages of illness may be relatively unstable. We suggest that, while such measures may be readily identified as potential neurobiological markers of established illness, they are inconsistent at (or around) the time of illness onset when assessed cross-sectionally. Instead, identification of more valid risk markers may require longitudinal assessment to ascertain normal or abnormal trajectories of neurodevelopment. Accordingly, we assert that the current conceptualisations of potential biomarkers and/or ‘endophenotypes’ for schizophrenia may need to be reconsidered in the context of normal and abnormal brain maturational processes at the time of onset of psychotic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asato, M. R., Sweeney, J. A., & Luna, B. (2006). Cognitive processes in the development of TOL performance. Neuropsychologia, 44(12), 2259–2269.

    Article  PubMed  Google Scholar 

  • Bartok, E., Berecz, R., Glaub, T., & Degrell, I. (2005). Cognitive functions in prepsychotic patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(4), 621–625.

    Article  PubMed  Google Scholar 

  • Benetti, S., Mechelli, A., Picchioni, M., Broome, M., Williams, S., and McGuire, P. (2009). Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first episode schizophrenia and the at risk mental state. Brain.

  • Berger, G. E., Wood, S. J., Pantelis, C., Velakoulis, D., Wellard, R. M., & McGorry, P. D. (2002). Implications of lipid biology for the pathogenesis of schizophrenia. Australian and New Zealand Journal of Psychiatry, 36(3), 355–366.

    Article  PubMed  Google Scholar 

  • Berger, G. E., Wood, S. J., Velakoulis, D., Ang, A., Brewer, W. J., Phillips, L. J., et al. (2007). Ventricle volumes in emerging psychosis. A cross-sectional and longitudinal MR1 study. European Psychiatry, 22, S30–S31.

    Article  Google Scholar 

  • Bertolino, A., Callicott, J. H., Elman, I., Mattay, V. S., Tedeschi, G., Frank, J. A., et al. (1998). Regionally specific neuronal pathology in untreated patients with schizophrenia: a proton magnetic resonance spectroscopic imaging study. Biological Psychiatry, 43(9), 641–648.

    Article  PubMed  CAS  Google Scholar 

  • Bora, E., Yucel, M., Fornito, A., Berk, M., & Pantelis, C. (2008). Major psychoses with mixed psychotic and mood symptoms: are mixed psychoses associated with different neurobiological markers? Acta Psychiatrica Scandinavica, 118(3), 172–187.

    Article  PubMed  CAS  Google Scholar 

  • Borgwardt, S. J., Riecher-Rossler, A., Dazzan, P., Chitnis, X., Aston, J., Drewe, M., et al. (2007). Regional gray matter volume abnormalities in the at risk mental state. Biological Psychiatry, 61(10), 1148–1156.

    Article  PubMed  Google Scholar 

  • Borgwardt, S. J., McGuire, P. K., Aston, J., Gschwandtner, U., Pfluger, M. O., Stieglitz, R. D., et al. (2008). Reductions in frontal, temporal and parietal volume associated with the onset of psychosis. Schizophrenia Research, 106(2–3), 108–114.

    Article  PubMed  Google Scholar 

  • Braff, D. L., Freedman, R., Schork, N. J., & Gottesman, I. I. (2007). Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophrenia Bulletin, 33(1), 21–32.

    Article  PubMed  Google Scholar 

  • Brewer, W. J., Wood, S. J., McGorry, P. D., Francey, S. M., Phillips, L. J., Yung, A. R., et al. (2003). Impairment of olfactory identification ability in individuals at ultra-high risk for psychosis who later develop schizophrenia. American Journal of Psychiatry, 160(10), 1790–1794.

    Article  PubMed  Google Scholar 

  • Brewer, W. J., Francey, S. M., Wood, S. J., Jackson, H. J., Pantelis, C., Phillips, L. J., et al. (2005). Memory impairments identified in people at ultra-high risk for psychosis who later develop first-episode psychosis. American Journal of Psychiatry, 162(1), 71–78.

    Article  PubMed  Google Scholar 

  • Brewer, W. J., Pantelis, C., De Luca, C. R., & Wood, S. J. (2006). Olfactory processing and brain maturation. In W. J. Brewer, D. J. Castle & C. Pantelis (Eds.), Olfaction and the brain (pp. 103–118). Cambridge: Cambridge University Press.

    Google Scholar 

  • Brewer, W. J., Yucel, M., Harrison, B. J., McGorry, P. D., Olver, J., Egan, G. F., et al. (2007). Increased prefrontal cerebral blood flow in first-episode schizophrenia following treatment: longitudinal positron emission tomography study. Australian and New Zealand Journal of Psychiatry, 41(2), 129–135.

    Article  PubMed  Google Scholar 

  • Broome, M. R., Matthiasson, P., Fusar-Poli, P., Woolley, J. B., Johns, L. C., Tabraham, P., et al. (2009). Neural correlates of executive function and working memory in the ‘at-risk mental state’. British Journal of Psychiatry, 194(1), 25–33.

    Article  PubMed  Google Scholar 

  • Byrne, M., Hodges, A., Grant, E., Owens, D. G., & Johnstone, E. C. (1999). Neuropsychological assessment of young people at high genetic risk for developing schizophrenia compared with controls: preliminary findings of the Edinburgh High Risk Study (EHRS). Psychological Medicine, 29, 1161–1173.

    Article  PubMed  CAS  Google Scholar 

  • Cannon, T. D. (2005). Clinical and genetic high-risk strategies in understanding vulnerability to psychosis. Schizophrenia Research, 79(1), 35–44.

    Article  PubMed  Google Scholar 

  • Carter, C. S., Perlstein, W., Ganguli, R., Brar, J., Mintun, M., & Cohen, J. D. (1998). Functional hypofrontality and working memory dysfunction in schizophrenia. American Journal of Psychiatry, 155, 1285–1287.

    PubMed  CAS  Google Scholar 

  • Cornblatt, B. A., & Erlenmeyer-Kimling, L. (1985). Global attentional deviance as a marker of risk for schizophrenia: specificity and predictive validity. Journal of Abnormal Psychology, 94(4), 470–486.

    Article  PubMed  CAS  Google Scholar 

  • Cornblatt, B. A., & Keilp, J. G. (1994). Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophrenia Bulletin, 20(1), 31–46.

    PubMed  CAS  Google Scholar 

  • Cornblatt, B. A., & Malhotra, A. K. (2001). Impaired attention as an endophenotype for molecular genetic studies of schizophrenia. American Journal of Medical Genetics, 105(1), 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Cosway, R., Byrne, M., Clafferty, R., Hodges, A., Grant, E., Abukmeil, S. S., et al. (2000). Neuropsychological change in young people at high risk for schizophrenia: results from the first two neuropsychological assessments of the Edinburgh High Risk Study. Psychological Medicine, 30(5), 1111–1121.

    Article  PubMed  CAS  Google Scholar 

  • Cosway, R., Byrne, M., Clafferty, R., Hodges, A., Grant, E., Morris, J., et al. (2002). Sustained attention in young people at high risk for schizophrenia. Psychological Medicine, 32(2), 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Crossley, N. A., Mechelli, A., Fusar-Poli, P., Broome, M. R., Matthiasson, P., Johns, L. C., et al. (2009). Superior temporal lobe dysfunction and frontotemporal dysconnectivity in subjects at risk of psychosis and in first-episode psychosis. Human Brain Mapping.

  • Davidson, L. L., & Heinrichs, R. W. (2003). Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: a meta-analysis. Psychiatry Research, 122(2), 69–87.

    Article  PubMed  Google Scholar 

  • De Luca, C. R., Wood, S. J., Anderson, V., Buchanan, J. A., Proffitt, T. M., Mahony, K., et al. (2003). Normative data from the CANTAB. I: development of executive function over the lifespan. Journal of Clinical and Experimental Neuropsychology, 25(2), 242–254.

    Article  PubMed  Google Scholar 

  • Dickinson, D., Ramsey, M. E., & Gold, J. M. (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64(5), 532–542.

    Article  PubMed  Google Scholar 

  • Eastvold, A. D., Heaton, R. K., and Cadenhead, K. S. (2007). Neurocognitive deficits in the (putative) prodrome and first episode of psychosis. Schizophrenia Research.

  • Erlenmeyer-Kimling, L., Rock, D., Roberts, S. A., Janal, M., Kestenbaum, C., Cornblatt, B., et al. (2000). Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychoses: the New York high-risk project. American Journal of Psychiatry, 157, 1416–1422.

    Article  PubMed  CAS  Google Scholar 

  • Ettinger, U., Picchioni, M., Hall, M. H., Schulze, K., Toulopoulou, T., Landau, S., et al. (2006). Antisaccade performance in monozygotic twins discordant for schizophrenia: the Maudsley twin study. American Journal of Psychiatry, 163(3), 543–545.

    Article  PubMed  Google Scholar 

  • Feinberg, I. (1982). Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17(4), 319–334.

    Article  PubMed  Google Scholar 

  • Fornito, A., Yung, A. R., Wood, S. J., Phillips, L. J., Nelson, B., Cotton, S., et al. (2008). Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals. Biological Psychiatry, 64(9), 758–765.

    Article  PubMed  Google Scholar 

  • Fornito, A., Yucel, M., Patti, J., Wood, S. J., & Pantelis, C. (2009). Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophrenia Research, 108(1–3), 104–113.

    Article  PubMed  CAS  Google Scholar 

  • Francey, S. M., Jackson, H. J., Phillips, L. J., Wood, S. J., Yung, A. R., & McGorry, P. D. (2005). Sustained attention in young people at high risk of psychosis does not predict transition to psychosis. Schizophrenia Research, 79(1), 127–136.

    Article  PubMed  Google Scholar 

  • Fusar-Poli, P., Broome, M. R., Matthiasson, P., Williams, S. C., Brammer, M., & McGuire, P. K. (2007a). Effects of acute antipsychotic treatment on brain activation in first episode psychosis: an fMRI study. European Neuropsychopharmacology, 17(6–7), 492–500.

    Article  CAS  Google Scholar 

  • Fusar-Poli, P., Perez, J., Broome, M., Borgwardt, S., Placentino, A., Caverzasi, E., et al. (2007b). Neurofunctional correlates of vulnerability to psychosis: a systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews.

  • Garner, B., Pariante, C. M., Wood, S. J., Velakoulis, D., Phillips, L., Soulsby, B., et al. (2005). Pituitary volume predicts future transition to psychosis in individuals at ultra-high risk of developing psychosis. Biological Psychiatry, 58(5), 417–423.

    Article  PubMed  Google Scholar 

  • Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021, 77–85.

    Article  PubMed  Google Scholar 

  • Glahn, D. C., Thompson, P. M., & Blangero, J. (2007). Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Human Brain Mapping, 28(6), 488–501.

    Article  PubMed  Google Scholar 

  • Goghari, V. M., Rehm, K., Carter, C. S., & MacDonald, A. W. (2007a). Sulcal thickness as a vulnerability indicator for schizophrenia. British Journal of Psychiatry, 191, 229–233.

    Article  PubMed  Google Scholar 

  • Goghari, V. M., Rehm, K., Carter, C. S., & MacDonald, A. W., 3rd. (2007b). Regionally specific cortical thinning and gray matter abnormalities in the healthy relatives of schizophrenia patients. Cerebral Cortex, 17(2), 415–424.

    Article  PubMed  Google Scholar 

  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry, 160(4), 636–645.

    Article  PubMed  Google Scholar 

  • Harris, J. M., Moorhead, T. W., Miller, P., McIntosh, A. M., Bonnici, H. M., Owens, D. G., et al. (2007). Increased prefrontal gyrification in a large high-risk cohort characterizes those who develop schizophrenia and reflects abnormal prefrontal development. Biological Psychiatry, 62(7), 722–729.

    Article  PubMed  Google Scholar 

  • Harrison, P. J., & Lewis, D. A. (2003). Neuropathology of schizophrenia. In S. R. Hirsch & D. R. Weinberger (Eds.), Schizophrenia (pp. 310–325). Oxford: Blackwell Science.

    Chapter  Google Scholar 

  • Hawkins, K. A., Keefe, R. S., Christensen, B. K., Addington, J., Woods, S. W., Callahan, J., et al. (2008). Neuropsychological course in the prodrome and first episode of psychosis: findings from the PRIME North America double blind treatment study. Schizophrenia Research, 105(1–3), 1–9.

    Article  PubMed  Google Scholar 

  • Heckers, S. (2001). Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus, 11(5), 520–528.

    Article  PubMed  CAS  Google Scholar 

  • Hurlemann, R., Jessen, F., Wagner, M., Frommann, I., Ruhrmann, S., Brockhaus, A., et al. (2008). Interrelated neuropsychological and anatomical evidence of hippocampal pathology in the at-risk mental state. Psychological Medicine, 38(6), 843–851.

    Article  PubMed  CAS  Google Scholar 

  • Huttenlocher, P. (1984). Synapse elimination and plasticity in developing human cerebral cortex. American Journal of Mental Deficiency, 88, 488–496.

    PubMed  CAS  Google Scholar 

  • Jessen, F., Scherk, H., Träber, F., Theyson, S., Berning, J., Tepest, R., et al. (2006). Proton magnetic resonance spectroscopy in subjects at risk for schizophrenia. Schizophrenia Research, 87, 81–88.

    Article  PubMed  Google Scholar 

  • Job, D. E., Whalley, H. C., Johnstone, E. C., & Lawrie, S. M. (2005). Grey matter changes over time in high risk subjects developing schizophrenia. Neuroimage, 25(4), 1023–1030.

    Article  PubMed  Google Scholar 

  • Jones, H. M., Brammer, M. J., O’Toole, M., Taylor, T., Ohlsen, R. I., Brown, R. G., et al. (2004). Cortical effects of quetiapine in first-episode schizophrenia: a preliminary functional magnetic resonance imaging study. Biological Psychiatry, 56(12), 938–942.

    Article  PubMed  CAS  Google Scholar 

  • Keefe, R. S., Perkins, D. O., Gu, H., Zipursky, R. B., Christensen, B. K., & Lieberman, J. A. (2006). A longitudinal study of neurocognitive function in individuals at-risk for psychosis. Schizophrenia Research, 88(1–3), 26–35.

    Article  PubMed  Google Scholar 

  • Keshavan, M. S., Berger, G., Zipursky, R. B., Wood, S. J., & Pantelis, C. (2005). Neurobiology of early psychosis. British Journal of Psychiatry. Supplement, 48, s8–s18.

    Article  PubMed  Google Scholar 

  • Keshavan, M. S., Prasad, K. M., & Pearlson, G. (2007). Are brain structural abnormalities useful as endophenotypes in schizophrenia? International Review of Psychiatry, 19(4), 397–406.

    Article  PubMed  Google Scholar 

  • Klosterkötter, J., Hellmich, M., Steinmeyer, E. M., & Schultze-Lutter, F. (2001). Diagnosing schizophrenia in the initial prodromal phase. Archives of General Psychiatry, 58, 158–164.

    Article  PubMed  Google Scholar 

  • Lawrie, S. M., & Abukmeil, S. S. (1998). Brain abnormality in schizophrenia: a systematic and quantitative review of volumetric magnetic resonance imaging studies. British Journal of Psychiatry, 172, 110–120.

    Article  PubMed  CAS  Google Scholar 

  • Lawrie, S. M., Whalley, H., Kestelman, J. N., Abukmeil, S. S., Byrne, M., Hodges, A., et al. (1999). Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet, 353, 30–33.

    Article  PubMed  CAS  Google Scholar 

  • Lawrie, S. M., McIntosh, A. M., Hall, J., Owens, D. G., & Johnstone, E. C. (2008). Brain structure and function changes during the development of schizophrenia: the evidence from studies of subjects at increased genetic risk. Schizophrenia Bulletin, 34(2), 330–340.

    Article  PubMed  Google Scholar 

  • Lencz, T., Smith, C. W., McLaughlin, D., Auther, A., Nakayama, E., Hovey, L., et al. (2006). Generalized and specific neurocognitive deficits in prodromal schizophrenia. Biological Psychiatry, 59(9), 863–871.

    Article  PubMed  Google Scholar 

  • Luna, B., & Sweeney, J. A. (2001). Studies of brain and cognitive maturation through childhood and adolescence: a strategy for testing neurodevelopmental hypotheses. Schizophrenia Bulletin, 27(3), 443–455.

    PubMed  CAS  Google Scholar 

  • Luna, B., & Sweeney, J. A. (2004). The emergence of collaborative brain function: FMRI studies of the development of response inhibition. Annals of the New York Academy of Sciences, 1021, 296–309.

    Article  PubMed  Google Scholar 

  • Miller, B. L., Chang, L., Booth, R., Ernst, T., Cornford, M., Nikas, D., et al. (1996). In vivo 1H MRS choline: Correlation with in vitro chemistry/histology. Life Sciences, 58(22), 1929–1935.

    Article  PubMed  CAS  Google Scholar 

  • Mirsky, A. F. (1995). Israeli high risk study: editor’s introduction. Schizophrenia Bulletin, 21(2), 179–182.

    PubMed  CAS  Google Scholar 

  • Morey, R. A., Inan, S., Mitchell, T. V., Perkins, D. O., Lieberman, J. A., & Belger, A. (2005). Imaging frontostriatal function in ultra-high-risk, early, and chronic schizophrenia during executive processing. Archives of General Psychiatry, 62(3), 254–262.

    Article  PubMed  Google Scholar 

  • Murray, R. M., & Lewis, S. W. (1987). Is schizophrenia a neurodevelopmental disorder? [editorial]. Br Med J (Clin Res Ed), 295(6600), 681–682.

    Article  CAS  Google Scholar 

  • Murray, G. K., Jones, P. B., Kuh, D., & Richards, M. (2007). Infant developmental milestones and subsequent cognitive function. Annals of Neurology, 62(2), 128–136.

    Article  PubMed  Google Scholar 

  • Nakamura, M., Salisbury, D. F., Hirayasu, Y., Bouix, S., Pohl, K. M., Yoshida, T., et al. (2007). Neocortical gray matter volume in first-episode schizophrenia and first-episode affective psychosis: a cross-sectional and longitudinal MRI study. Biological Psychiatry, 62(7), 773–783.

    Article  PubMed  Google Scholar 

  • Nelson, M. D., Saykin, A. J., Flashman, L. A., & Riordan, H. J. (1998). Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Archives of General Psychiatry, 55, 433–440.

    Article  PubMed  CAS  Google Scholar 

  • Nieman, D., Becker, H., van de Fliert, R., Plat, N., Bour, L., Koelman, H., et al. (2007). Antisaccade task performance in patients at ultra high risk for developing psychosis. Schizophrenia Research, 95(1–3), 54–60.

    Article  PubMed  Google Scholar 

  • Olsen, K. A., & Rosenbaum, B. (2006). Prospective investigations of the prodromal state of schizophrenia: review of studies. Acta Psychiatrica Scandinavica, 113(4), 247–272.

    Article  PubMed  CAS  Google Scholar 

  • Pantelis, C., & Wood, S. J. (2009). Imaging in Schizophrenia: looking back and peering ahead. Annals of the Academy of Medicine, Singapore, 38(5), 440–441.

    PubMed  Google Scholar 

  • Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., et al. (2003). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet, 361(9354), 281–288.

    Article  PubMed  Google Scholar 

  • Pantelis, C., Yucel, M., Wood, S. J., Velakoulis, D., Sun, D., Berger, G., et al. (2005). Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophrenia Bulletin, 31(3), 672–696.

    Article  PubMed  Google Scholar 

  • Pantelis, C., Velakoulis, D., Wood, S. J., Yucel, M., Yung, A. R., Phillips, L. J., et al. (2007). Neuroimaging and emerging psychotic disorders: the Melbourne ultra-high risk studies. International Review of Psychiatry, 19(4), 371–379.

    Article  PubMed  CAS  Google Scholar 

  • Pantelis, C., Yücel, M., Wood, S. J., Brewer, W. J., Fornito, A., Berger, G., et al. (2009). Neurobiological endophenotypes of psychosis and schizophrenia: Are there biological markers of illness onset? In H. J. Jackson & P. D. McGorry (Eds.), The recognition and management of early psychosis: A preventive approach (pp. 61–80). Cambridge: Cambridge University Press.

    Google Scholar 

  • Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 60–68.

    Article  PubMed  Google Scholar 

  • Phillips, L. J., Velakoulis, D., Pantelis, C., Wood, S., Yuen, H. P., Yung, A. R., et al. (2002). Non-reduction in hippocampal volume is associated with higher risk of psychosis. Schizophrenia Research, 58(2–3), 145–158.

    Article  PubMed  Google Scholar 

  • Pukrop, R., Schultze-Lutter, F., Ruhrmann, S., Brockhaus-Dumke, A., Tendolkar, I., Bechdolf, A., et al. (2006). Neurocognitive functioning in subjects at risk for a first episode of psychosis compared with first- and multiple-episode schizophrenia. Journal of Clinical and Experimental Neuropsychology, 28(8), 1388–1407.

    Article  PubMed  Google Scholar 

  • Pukrop, R., Ruhrmann, S., Schultze-Lutter, F., Bechdolf, A., Brockhaus-Dumke, A., & Klosterkotter, J. (2007). Neurocognitive indicators for a conversion to psychosis: comparison of patients in a potentially initial prodromal state who did or did not convert to a psychosis. Schizophrenia Research, 92(1–3), 116–125.

    Article  PubMed  Google Scholar 

  • Reddy, R., & Keshavan, M. S. (2003). Phosphorus magnetic resonance spectroscopy: its utility in examining the membrane hypothesis of schizophrenia. Prostaglandins Leukotrienes and Essential Fatty Acids, 69(6), 401–405.

    Article  CAS  Google Scholar 

  • Rutschmann, J., Cornblatt, B., & Erlenmeyer-Kimling, L. (1977). Sustained attention in children at risk for schizophrenia. Report on a continuous performance test. Archives of General Psychiatry, 34(5), 571–575.

    PubMed  CAS  Google Scholar 

  • Schall, U., Halpin, S. A., Hunt, S. A., Beckmann, J., Chenoweth, B., Mah, B. L., et al. (2003). Neurocognitive profiles of young people at high risk versus first-episode psychosis: a follow-up study. Schizophrenia Research, 60(Suppl), 156.

    Article  Google Scholar 

  • Schultze-Lutter, F., Ruhrmann, S., Picker, H., von Reventlow, H. G., Daumann, B., Brockhaus-Dumke, A., et al. (2007). Relationship between subjective and objective cognitive function in the early and late prodrome. British Journal of Psychiatry. Supplement, 51, s43–s51.

    Article  PubMed  Google Scholar 

  • Seiferth, N. Y., Pauly, K., Habel, U., Kellermann, T., Shah, N. J., Ruhrmann, S., et al. (2008). Increased neural response related to neutral faces in individuals at risk for psychosis. Neuroimage, 40(1), 289–297.

    Article  PubMed  Google Scholar 

  • Simon, A. E., Cattapan-Ludewig, K., Zmilacher, S., Arbach, D., Gruber, K., Dvorsky, D. N., et al. (2007). Cognitive functioning in the schizophrenia prodrome. Schizophrenia Bulletin, 33(3), 761–771.

    Article  PubMed  Google Scholar 

  • Smyrnis, N., Evdokimidis, I., Stefanis, N. C., Avramopoulos, D., Constantinidis, T. S., Stavropoulos, A., et al. (2003). Antisaccade performance of 1, 273 men: effects of schizotypy, anxiety, and depression. Journal of Abnormal Psychology, 112(3), 403–414.

    Article  PubMed  Google Scholar 

  • Snitz, B. E., MacDonald, A., 3rd, Cohen, J. D., Cho, R. Y., Becker, T., & Carter, C. S. (2005). Lateral and medial hypofrontality in first-episode schizophrenia: functional activity in a medication-naive state and effects of short-term atypical antipsychotic treatment. American Journal of Psychiatry, 162(12), 2322–2329.

    Article  PubMed  Google Scholar 

  • Steen, R. G., Mull, C., McClure, R., Hamer, R. M., & Lieberman, J. A. (2006). Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. British Journal of Psychiatry, 188, 510–518.

    Article  PubMed  Google Scholar 

  • Sun, D., Stuart, G. W., Jenkinson, M., Wood, S. J., McGorry, P. D., Velakoulis, D., van Erp, T. G., Thompson, P. M., Toga, A. W., Smith, D. J., Cannon, T. D., and Pantelis, C. (2008). Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Molecular Psychiatry.

  • Sun, D., Phillips, L., Velakoulis, D., Yung, A., McGorry, P. D., Wood, S. J., et al. (2009). Progressive brain structural changes mapped as psychosis develops in ‘at risk’ individuals. Schizophrenia Research, 108(1–3), 85–92.

    Article  PubMed  Google Scholar 

  • Swerdlow, N. R., Light, G. A., Cadenhead, K. S., Sprock, J., Hsieh, M. H., & Braff, D. L. (2006). Startle gating deficits in a large cohort of patients with schizophrenia: relationship to medications, symptoms, neurocognition, and level of function. Archives of General Psychiatry, 63(12), 1325–1335.

    Article  PubMed  Google Scholar 

  • Taanila, A., Murray, G. K., Jokelainen, J., Isohanni, M., & Rantakallio, P. (2005). Infant developmental milestones: a 31-year follow-up. Developmental Medicine and Child Neurology, 47(9), 581–586.

    Article  PubMed  Google Scholar 

  • Testa, R., & Pantelis, C. (2009). The role of executive functions in psychiatric disorders. In S. J. Wood, N. Allen & C. Pantelis (Eds.), The neuropsychology of mental illness. Cambridge: Cambridge University Press. Vol. in press.

    Google Scholar 

  • Thompson, P. M., Woods, R. P., Mega, M. S., & Toga, A. W. (2000). Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Human Brain Mapping, 9(2), 81–92.

    Article  PubMed  CAS  Google Scholar 

  • Turetsky, B. I., Calkins, M. E., Light, G. A., Olincy, A., Radant, A. D., & Swerdlow, N. R. (2007). Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophrenia Bulletin, 33(1), 69–94.

    Article  PubMed  Google Scholar 

  • Velakoulis, D., & Pantelis, C. (1996). What have we learned from functional imaging studies in schizophrenia? The role of frontal, striatal and temporal areas. Australian and New Zealand Journal of Psychiatry, 30, 195–209.

    Article  PubMed  CAS  Google Scholar 

  • Velakoulis, D., Wood, S. J., Wong, M. T., McGorry, P. D., Yung, A., Phillips, L., et al. (2006). Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Archives of General Psychiatry, 63(2), 139–149.

    Article  PubMed  Google Scholar 

  • Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660–669.

    PubMed  CAS  Google Scholar 

  • Weinberger, D. R. (2002). Biological phenotypes and genetic research on schizophrenia. World Psychiatry, 1(1), 2–6.

    PubMed  Google Scholar 

  • Weintraub, S. (1987). Risk factors in schizophrenia: the stony brook high-risk project. Schizophrenia Bulletin, 13(3), 439–450.

    PubMed  CAS  Google Scholar 

  • Whalley, H. C., Simonotto, E., Moorhead, W., McIntosh, A., Marshall, I., Ebmeier, K. P., et al. (2006). Functional imaging as a predictor of schizophrenia. Biological Psychiatry, 60(5), 454–462.

    Article  PubMed  Google Scholar 

  • Whalley, H. C., Harris, J. C., & Lawrie, S. M. (2007). The neurobiological underpinnings of risk and conversion in relatives of patients with schizophrenia. International Review of Psychiatry, 19(4), 383–397.

    Article  PubMed  Google Scholar 

  • Whyte, M. C., Brett, C., Harrison, L. K., Byrne, M., Miller, P., Lawrie, S. M., et al. (2006). Neuropsychological performance over time in people at high risk of developing schizophrenia and controls. Biological Psychiatry, 59(8), 730–739.

    Article  PubMed  Google Scholar 

  • Wolf, L. E., Cornblatt, B. A., Roberts, S. A., Shapiro, B. M., & Erlenmeyer-Kimling, L. (2002). Wisconsin Card Sorting deficits in the offspring of schizophrenics in the New York High-Risk Project. Schizophrenia Research, 57(2–3), 173.

    Article  PubMed  Google Scholar 

  • Wood, S. J., Berger, G., Velakoulis, D., Phillips, L. J., McGorry, P. D., Yung, A. R., et al. (2003a). Proton magnetic resonance spectroscopy in first episode psychosis and ultra high-risk individuals. Schizophrenia Bulletin, 29(4), 831–843.

    Google Scholar 

  • Wood, S. J., Pantelis, C., Proffitt, T., Phillips, L. J., Stuart, G. W., Buchanan, J. A., et al. (2003b). Spatial working memory ability is a marker of risk-for-psychosis. Psychological Medicine, 33(7), 1239–1247.

    Article  CAS  Google Scholar 

  • Wood, S. J., De Luca, C. R., Anderson, V., & Pantelis, C. (2004). Cognitive development in adolescence: Cerebral underpinnings, neural trajectories and the impact of aberrations. In M. S. Keshavan, J. L. Kennedy & R. M. Murray (Eds.), Neurodevelopment and schizophrenia (pp. 69–88). Cambridge: Cambridge University Press.

    Google Scholar 

  • Wood, S. J., Yucel, M., Velakoulis, D., Phillips, L. J., Yung, A. R., Brewer, W., et al. (2005). Hippocampal and anterior cingulate morphology in subjects at ultra-high-risk for psychosis: the role of family history of psychotic illness. Schizophrenia Research, 75(2–3), 295–301.

    Article  PubMed  Google Scholar 

  • Wood, S. J., Brewer, W. J., Koutsouradis, P., Phillips, L. J., Francey, S. M., Proffitt, T. M., et al. (2007). Cognitive decline following psychosis onset: data from the PACE clinic. British Journal of Psychiatry. Supplement, 51, s52–s57.

    Article  PubMed  Google Scholar 

  • Wood, S. J., Pantelis, C., Velakoulis, D., Yücel, M., Fornito, A., & McGorry, P. D. (2008). Progressive changes in the development towards schizophrenia: studies in subjects at increased symptomatic risk. Schizophrenia Bulletin, 34(2), 322–329.

    Article  PubMed  Google Scholar 

  • Wood, S. J., Pantelis, C., Yung, A. R., Velakoulis, D., & McGorry, P. D. (2009). Brain changes during the onset of schizophrenia: implications for neurodevelopmental theories. Medical Journal of Australia, 190(4), S10–S13.

    PubMed  Google Scholar 

  • Woods, B. T., Ward, K. E., & Johnson, E. H. (2005). Meta-analysis of the time-course of brain volume reduction in schizophrenia: implications for pathogenesis and early treatment. Schizophrenia Research, 73(2–3), 221–228.

    Article  PubMed  Google Scholar 

  • Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W., David, A. S., Murray, R. M., & Bullmore, E. T. (2000). Meta-analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry, 157(1), 16–25.

    PubMed  CAS  Google Scholar 

  • Yücel, M., Stuart, G. W., Maruff, P., Velakoulis, D., Crowe, S. F., Savage, G., et al. (2001). Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cerebral Cortex, 11, 17–25.

    Article  PubMed  Google Scholar 

  • Yücel, M., Stuart, G. W., Maruff, P., Wood, S., Savage, G., Smith, D. J., et al. (2002). Paracingulate morphological differences in males with established schizophrenia: a magnetic resonance imaging morphometric study. Biological Psychiatry, 52(1), 15–23.

    Article  PubMed  Google Scholar 

  • Yücel, M., Wood, S. J., Phillips, L. J., Stuart, G. W., Smith, D. J., Yung, A., et al. (2003). Morphology of the anterior cingulate cortex in young men at ultra-high risk of developing a psychotic illness. British Journal of Psychiatry, 182, 518–524.

    Article  PubMed  Google Scholar 

  • Yung, A. R., Stanford, C., Cosgrave, E., Killackey, E., Phillips, L., Nelson, B., et al. (2006). Testing the ultra high risk (prodromal) criteria for the prediction of psychosis in a clinical sample of young people. Schizophrenia Research, 84(1), 57–66.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by project grants from the National Health & Medical Research Council (NHMRC; grant IDs: 145627, 145737, 236175, 970598, 981112, 970391), NHMRC Program Grants (ID: 350241, 566529). Drs. Yücel, Wood, Brewer and Fornito are supported by fellowships from NHMRC (IDs: 509345, 359223, 454792, 454797, respectively). Dr. Wood is also supported by a NARSAD Young Investigator Award.

Disclosures

The authors have no conflicts to disclose with respect to the content or writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Pantelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantelis, C., Yücel, M., Bora, E. et al. Neurobiological Markers of Illness Onset in Psychosis and Schizophrenia: The Search for a Moving Target. Neuropsychol Rev 19, 385–398 (2009). https://doi.org/10.1007/s11065-009-9114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-009-9114-1

Keywords

Navigation