Skip to main content

Advertisement

Log in

Spatial–temporal patterns of cloud-to-ground lightning over the northwest Iberian Peninsula during the period 2010–2015

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The spatial–temporal patterns of cloud-to-ground (CG) lightning covering the period 2010–2015 over the northwest Iberian Peninsula were investigated. The analysis conducted employed three main methods: the circulation weather types developed by Jenkinson and Collison, the fit of a generalized additive model (GAM) for geographic variables, and the use of a concentration index for the ratio of lightning strikes and thunderstorm days. The main activity in the summer months can be attributed to situations with eastern or anticyclonic flow due to convection by insolation. In winter, lightning proves to have a frontal origin and is mainly associated with western or cyclonic flow situations which occur with advections of air masses of maritime origin. The largest number of CG discharges occurs under eastern flow and their hybrids with anticyclonic situations. Thunderstorms with greater CG lightning activity, highlighted by a higher concentration index, are located in areas with a higher density of lightning strikes, above all in mountainous areas away from the sea. The modeling of lightning density with geographic variables shows the positive influence of altitude and, particularly, distance to the sea, with nonlinear relationships due to the complex orography of the region. Likewise, areas with convex topography receive more lightning strikes than concave ones, a relation which has been demonstrated for the first time from a GAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Albrecht R, Goodman S, Buechler D, Blakeslee R, Christian H (2016) Where are the lightning hotspots on earth? BAMS 97:2051–2068

    Article  Google Scholar 

  • Anderson G, Klugmann D (2014) A European lightning density analysis using 5 years of ATDnet data. Nat Hazards Earth Syst Sci 14:815–829

    Article  Google Scholar 

  • Areitio J, Ezcurra A, Herrero I (2001) Cloud to ground lightning characteristics in the Spanish Basque Country area during the period 1992–1996. J Atmos Sol-Terr Phys 63:1005–1015

    Article  Google Scholar 

  • Ashley WS, Gilson CW (2009) A reassessment of US lightning mortality. BAMS 90:1502–1518

    Article  Google Scholar 

  • Ben Ami Y, Altaratz O, Yair Y, Koren I (2015) Lightning characteristics over the eastern coast of the Mediterranean during different synoptic systems. Nat Hazards Earth Syst Sci 15(11):2449–2459

    Article  Google Scholar 

  • Beringer J, Tapper N (2002) Surface energy exchanges and interactions with thunderstorms during the Maritime Continent Thunderstorm Experiment (MCTEX). J Geophys Res 107:AAC 3–1–AAC 3–13

  • Brooks H (2013) Severe thunderstorms and climate change. Atmos Res 123:129–138

    Article  Google Scholar 

  • Brooks HE, Dotzek N (2008) Climate extremes and society, Cambridge Press, chap The spatial distribution of severe convective storms and an analysis of their secular changes

  • Campbell RJ (2012) Weather-related power outages and electric system resiliency. Congressional Research Service 7-5700 www.crs.gov R42696:1–18

  • Christian H, Blakeslee R, Boccippio D, Boeck W, Buechler D, Driscoll K, Goodman S, Hall J, Koshak W, Mach D, Stewart M (2003) Global frequency and distribution of lightning as observed from space by the Optical transient detector. J Geophys Res 107:4005

    Article  Google Scholar 

  • Cummins KL (2012) On the relationship between terrain variations and LLS derived lightning parameters. In: International conference on lightning protection (ICLP), Vienna, Austria, Vienna, Austria, p 6

  • De Conti A, Silveira F, Visacro S (2015) Lightning strikes to tall objects: a study of wave interactions at the return-stroke front using a nonlinear transmission line model. J Geophys Res Atmos 120:6331–6345

    Article  Google Scholar 

  • Dwyer JR, Uman MA (2014) The physics of lightning. Phys Rep 534:147–241

    Article  Google Scholar 

  • Farnell C, Rigo T, Pineda N (2017) Lightning jump as a nowcast predictor: application to severe weather events in Catalonia. Atmos Res 183:130–141

    Article  Google Scholar 

  • Galanaki E, Flaounas E, Kotroni V, Lagouvardos K, Argiriou A (2016) Lightning activity in the Mediterranean: quantification of cyclones contribution and relation to their intensity. Atmos Sci Lett 17(9):510–516

    Article  Google Scholar 

  • Gômez-Gesteira M, Gimeno L, De Castro M, Lorenzo MN, Alvarez I, Nieto R, Taboada JJ, Crespo AJC, Ramos AM, Iglesias I, Gômez Gesteira JL, Santo FE, Barriopedro D, Trigo IF (2011) The state of climate in NW Iberia. Clim Res 48:109–144

    Article  Google Scholar 

  • Gungle B, Krider EP (2006) Cloud-to-ground lightning and surface rainfall in warm-season Florida thunderstorms. J Geophys Res 111(D19):203

    Article  Google Scholar 

  • Hastie T, Tibshirani R (1990) A generalized additive models, Monographs on Statistics and Applied Probability, vol 43. Chapman & Hall/CRC

  • Hill RD, Rinker RG, Dale WH (1979) Atmospheric nitrogen fixation by lightning. J Atmos Sci 37:179–192

    Article  Google Scholar 

  • Holle RL, Howard KW, Vavrek RJ, Allsopp J (1995) Safety in the presence of lightning. Semin Neurol 15:375–380

    Article  Google Scholar 

  • Huth R, Beck C, Philipp A, Demuzere M, Ustrnul Z, Cahynová M, Kyselý J, Tveito OE (2008) Classifications of atmospheric circulation patterns: recent advances and applications. Ann N Y Acad Sci 1147:105–152

    Article  Google Scholar 

  • Huth R, Beck C, Kučerová M (2016) Synoptic-climatological evaluation of the classifications of atmospheric circulation patterns over Europe. Int J Climatol 36:2710–2726

    Article  Google Scholar 

  • Jenkinson AF, Collison FP (1977) An initial climatology of gales over the North sea. Synoptic Climatology Branch Memorandum 62: Meteorological Office (London)

  • Jolliffe IT, Hope PB (1996) Bounded bivariate distributions with nearly normal marginal. Am Stat 50:17–20. https://doi.org/10.2307/2685038

    Google Scholar 

  • Jones PD, Hulme M, Briffa KR (1993) A comparison of Lamb circulation types with an objective calssigication scheme. Int J Climatol 13:655–663

    Article  Google Scholar 

  • Kilinc M, Beringer J (2007) The spatial and temporal distribution of lightning strikes and their relationship with vegetation type, elevation, and fire scars in the Northern territory. J Clim 20:1161–1173

    Article  Google Scholar 

  • Koethe R, Lehmeier F (1996) SARA - System zur automatischen Relief-analyse. User manual, 2nd edn. [Dept. of Geography, University of Goettingen, unpublished]

  • Kornei K (2018) Australian state forecasts deadly thunderstorm asthma. Science 359(6374):380. https://doi.org/10.1126/science.359.6374.380

    Article  Google Scholar 

  • Kotroni V, Lagouvardos K (2008) Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean. J Geophys Res 113

  • Liu W, Wang S, Zhou Y, Wang L, Zhu J, Wang F (2016) Lightning-caused forest fire risk rating assessment based on case-based reasoning: a case study in DaXingAn mountains of China. Nat Hazards 81:347–363

    Article  Google Scholar 

  • Lorenzo MN, Taboada JJ, Gimeno L (2008) Links between circulation weather types and teleconnection patterns and their influence on precipitation patterns in Galicia (NW Spain). Int J Climatol 28:1493–1505

    Article  Google Scholar 

  • López RE, Holle RL (1986) Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer. Mon Weather Rev 114:1288–1312

    Article  Google Scholar 

  • Martin-Vide J (2004) Spatial distribution of a daily precipitation concentration index in peninsular Spain. Int J Climatol 24:959–971. https://doi.org/10.1002/joc.1030

    Article  Google Scholar 

  • Martín-Vide J, Moreno García MC (2012) La díficil determinación de la evolución del número de días de tormenta en España. el caso de Barcelona. Polígonos Revista de Geografía 24:77–94

    Google Scholar 

  • Michaelides S, Savvidou K, Nicolaides K (2010) Relationships between lightning and rainfall intensities during rainy events in Cyprus. Adv Geosci 23:87–92

    Article  Google Scholar 

  • Mills B, Unrau D, Pentelow L, Spring K (2010) Assessment of lightning-related damage and disruption in Canada. Nat Hazards 52:481–499

    Article  Google Scholar 

  • Mora García M, Martín JR, Soriano LR, Dávila FP (2015) Observed impact of land uses and soil types on cloud-to-ground lightning in Castilla-Leon (Spain). Atmos Res 166

  • Naranjo L, Prez Muñuzuri V (eds) (2006) A variabilidade natural do clima en Galicia. Xunta de Galicia-Consellería de Medio Ambiente e Desenvolvemento Sostible

  • Olascoaga MJ (1950) Some aspects of Argentine rainfall. Tellus B 2:312–318

    Google Scholar 

  • Pal J, Chaudhuri S, Chowdhury AR, Bandyopadhyay T (2016) Cloud - aerosol interaction during lightning activity over land and ocean: precipitation pattern assessment. Asia-Pac J Atmos Sci 52(3):251–261

    Article  Google Scholar 

  • Philipp A (2009) Comparison of principal component and cluster analysis for classifying circulation pattern sequences for the European domain. Theor Appl Climatol 96:31–41

    Article  Google Scholar 

  • Philipp A, Bartholy J, Beck C, Erpicum M, Esteban P, Fettweis X, Huth R, James P, Jourdain S, Kreienkamp F, Krennert T, Lykoudis S, Michalides SC, Pianko-Kluczynska K, Post P, Alvarez DR, Schiemann R, Spekat A, Tymvios F (2010) Cost733cat—a database of weather and circulation type classifications. Phys Chem Earth (Special Issue) 35:360–373

    Article  Google Scholar 

  • Pineda N, Montanya J (2009) Lightning: principles, instruments and applications review of modern lightning research, Springer, chap Lightning detection in Spain: the particular case of Catalonia, pp 161–185

  • Pineda N, Rigo T, Bech J, Soler X (2007) Lightning and precipitation relationship in summer thunderstorms: case studies in the North Western Mediterranean region. Atmos Res 85:159–170

    Article  Google Scholar 

  • Pineda N, Esteban P, Trapero L, Soler X, Beck C (2010) Circulation types related to lightning activity over Catalonia and the Principality of Andorra. Phys Chem Earth 35:469–476

    Article  Google Scholar 

  • Pineda N, Montanyà J, Van der Velde OA (2014) Characteristics of lightning related to wildfire ignitions in Catalonia. Atmos Res 135(136):380–387

    Article  Google Scholar 

  • Poelman DR (2014) A 10-year study on the characteristics of thunderstorms in Belgium based on cloud-to-ground lightning data. Mon Weather Rev 142:4839–4849

    Article  Google Scholar 

  • Price C (2009) Lightning: principles, instruments and applications review of modern lightning research, Springer, chap Thunderstorms, lightning and climate change

  • Rakov VA, Uman MA (2007) Lightning: physics and effects. Cambridge University Press, Cambridge

    Google Scholar 

  • Ramos AB, Ramos R, Sousa P, Trigo RM, Janeira M, Prior V (2011) Cloud to ground lightning activity over Portugal and its association with circulation weather types. Atmos Res 101:84–101

    Article  Google Scholar 

  • Ramos AM, Barriopedro D, Dutra E (2015) Circulation weather types as a tool in atmospheric, climate, and environmental research. Front Environ Sci 3

  • Reap RM (1986) Evaluation of cloud-to-ground lightning data from the western United States for the 1983–1984 summer seasons. J Appl Meteorol Climatol 25:785–799

    Article  Google Scholar 

  • Riehl H (1949) Some aspects of Hawaiian rainfall. BAMS 30:76–187

    Google Scholar 

  • Rivas-Soriano L, De Pablo F, Tomas CJ (2005) Ten-year study of cloud-to-ground lightning activity in the Iberian Peninsula. Atmos Sol-Terr Phys 67:1632–1639

    Article  Google Scholar 

  • Rivas-Soriano LJ, De Pablo F, Diez EG (2001) Meteorological and geo-orographical relationships with lightning activity in Castilla-Leon (Spain). Meteorol Appl 8:169–175

    Article  Google Scholar 

  • Rodríguez Guitián MA, Ramil-Rego P (2007) Clasificaciones climáticas aplicadas a Galicia: revisión desde una perspectiva biogeográfica. Recursos Rurais 1:31–53

    Google Scholar 

  • Romps DM, Seeley JT, Vollaro D, Molinari J (2014) Projected increase in lightning strikes in the United States due to global warming. Science 346:851–854

    Article  Google Scholar 

  • Rorig ML, Mckay SJ, Ferguson SA, Werth P (2007) Model-generated predictions of dry thunderstorm potential. J Appl Meteorol Climatol 46:605–614

    Article  Google Scholar 

  • Rosenfeld D, Lohmann U, Raga GB, O’Dowd C, Kulmala M, Fuzzi S, Reissell A, Andreae M (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313

    Article  Google Scholar 

  • Santos JA, Reis MA, Sousa J, Leite SM, Correia S, Janeira M, Fragoso M (2012) Cloud-to-ground lightning in Portugal: patterns and dynamical forcing. Nat Hazards Earth Syst Sci 12:639–649

    Article  Google Scholar 

  • Schneider P, Roberts D, Kyriakidis P (2008) A vari-based relative greenness from modis data for computing the fire potential index. Remote Sens Environ 112:1151–1167

    Article  Google Scholar 

  • Seity Y, Soula S, Sauvageot H (2001) Lightning and precipitation relationship in coastal thunderstorms. J Geophys Res 106:22801–22816

    Article  Google Scholar 

  • Sáez de Cámara E, Gangoiti G, Alonso L, Iza J (2015) Daily precipitation in northern iberia: Understanding the recent changes after the circulation variability in the north atlantic sector. J Geophys Res Atmos 120(19):9981–10005

    Article  Google Scholar 

  • Shalev S, Saaroni H, Izsak T, Yair Y, Ziv B (2011) The spatio-temporal distribution of lightning over Israel and the neighboring area and its relation to regional synoptic systems. Nat Hazards Earth Syst Sci 11:2125–2135

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    Book  Google Scholar 

  • Soula S (2009) Lightning: principles, instruments and applications review of modern lightning research. Springer, chap Lightning and precipitation, pp 447–463

  • Sousa JF, Fragoso M, Mendes S, Corte-Real J, Santos JA (2013) Statistical-dynamical modeling of the cloud-to-ground lightning activity in Portugal. Atmos Res 132–133:46–64

    Article  Google Scholar 

  • Tomas C, De Pablo F, Rivas-Soriano L (2004) Circulation weather types and cloud-to-ground flash density over the Iberian Peninsula. Int J Climatol 24:109–123

    Article  Google Scholar 

  • Trigo R, Da Camara C (2000) Circulation weather types and their influence on the precipitation regime in Portugal. Int J Climatol 20:1559–1581

    Article  Google Scholar 

  • Tsenova B, Barakova D, Mitzeva R (2017) Numerical study on the effect of charge separation at low cloud temperature and effective water content on thunderstorm electrification. Atmos Res 184:1–14

    Article  Google Scholar 

  • Van Delden A (2001) The synoptic setting of thunderstorms in western Europe. Atmos Res 56:89–110

    Article  Google Scholar 

  • Vogt BJ, Hodanish SJ (2016) A geographical analysis of warm season lightning/landscape interactions across Colorado, USA. Appl Geogr 75:93–103

    Article  Google Scholar 

  • Wapler K, James P (2015) Thunderstorm occurrence and characteristics in central europe under different synoptic conditions. Atmos Res 158–159:231–244

    Article  Google Scholar 

  • Williams E, Stanfill S (2002) Origine physique du contraste entre activité électrique au dessus des terres et des océans. CR Phys 3:1277–1292

    Article  Google Scholar 

  • Williams E, Mushtak V, Rosenfeld D, Goodman S, Boccippio D (2005) Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos Res 76:288–306

    Article  Google Scholar 

  • Wood S (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, London

    Google Scholar 

  • Wood S (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B 73:3–36

    Article  Google Scholar 

  • Yair Y, Aviv R, Ravid G, Yaniv R, Ziv B (2006) Evidence for synchronicity of lightning activity in networks of spatially remote thunderstorms. J Atmos Solar Terr Phys 68:1401–1415

    Article  Google Scholar 

  • Yuan T, Remer LA, Pickering KE, Yu H (2011) Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys Res Lett 38(L04):701

    Google Scholar 

  • Zipser EJ, Lutz KR (1994) The vertical profile of radar reflectivityof convective cells: a strong indicator of storm intensity and lightningprobability. Mon Weather Rev 122:1751–1759

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Royé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Royé, D., Lorenzo, N. & Martin-Vide, J. Spatial–temporal patterns of cloud-to-ground lightning over the northwest Iberian Peninsula during the period 2010–2015. Nat Hazards 92, 857–884 (2018). https://doi.org/10.1007/s11069-018-3228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-018-3228-9

Keywords

Navigation