Skip to main content

Advertisement

Log in

A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya

  • Review Article
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Indian Himalayan region is highly susceptible to landslides because of its complex geology, rugged topography, steep slopes augmented by seismo-tectonic activities and heavy rainfalls, and often causes life losses with huge economic damages. Therefore, landslide susceptibility zonation (LSZ) mapping provides an effective solution for the end-users to estimate the vulnerability level and determine potential consequences. To date, different methodological frameworks have been implemented in terms of spatial modelling and predict future landslide locations for meeting these needs. Hence, it is necessary and meaningful to conduct a review of the current state of the studies addressed to LSZ mapping in the Indian Himalayan region. Based on this, the present paper reviews 144 research articles published in the last decade (2010–2020) to understand the recent trends, techniques and practices adopted by researches. Along with the review process, some critical points are emphasized with short- and long-term visions based on the issues discussed by various researchers; thereby, we try to ensure that this review work presents a more general deliberation of LSZ mapping which may also be relevant for global practitioners. At the same time this review also serves as a relevant database for scientist and researchers working in the field of landslide particularly in the Himalayan region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analysed in this study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Ahmed B, Rahman M, Islam R, Sammonds P, Zhou C, Uddin K, Al-Hussaini TM (2018) Developing a dynamic web-GIS based landslide early warning system for the Chittagong metropolitan area. Bangladesh ISPRS Int J Geo-Inform 7(12):485. https://doi.org/10.3390/ijgi7120485

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Env 58(1):21–44. https://doi.org/10.1007/s100640050066

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277

    Article  Google Scholar 

  • Anbalagan R, Kumar R, Lakshmanan K, Parida S, Neethu S (2015) Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley. Sikkim Geoenvironmental Dis 2(1):1–17. https://doi.org/10.1186/s40677-014-0009-y

    Article  Google Scholar 

  • Balamurugan G, Ramesh V, Touthang M (2016) Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur. India Natural Hazards 84(1):465–488. https://doi.org/10.1007/s11069-016-2434-6

    Article  Google Scholar 

  • Banerjee P, Ghose MK, Pradhan R (2018) Analytic hierarchy process and information value method-based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya. Arab J Geosci 11(7):1–18. https://doi.org/10.1007/s12517-018-3488-4

    Article  Google Scholar 

  • Banshtu RS, Versain LD, Pandey DD (2020) Risk assessment using quantitative approach: central Himalaya, Kullu, Himachal Pradesh. India Arabian J Geosci 13(5):1–11. https://doi.org/10.1007/s12517-020-5143-0

    Article  Google Scholar 

  • Basu T, Pal S (2017) Exploring landslide susceptible zones by analytic hierarchy process (AHP) for the Gish River Basin, West Bengal. India Spatial Inform Res 25(5):665–675. https://doi.org/10.1007/s41324-017-0134-2

    Article  Google Scholar 

  • Bera A, Mukhopadhyay BP, Das D (2019) Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi. South Sikkim Natural Hazards 96(2):935–959. https://doi.org/10.1007/s11069-019-03580-w

    Article  Google Scholar 

  • Bhattacharya SK (2016) A comparison of the predicted vulnerability zones with the data based on hazard zones of landslide in the Kurseong hill subdivision, Darjeeling district, West Bengal. India Environ Earth Sci 75(10):923. https://doi.org/10.1007/s12665-016-5729-8

    Article  Google Scholar 

  • Bhusan K, Kundu SS, Goswami K, Sudhakar S (2014) Susceptibility mapping and estimation of rainfall threshold using space based input for assessment of landslide hazard in Guwahati city in North East India. Int Archiv Photogramm, Remote Sens Spatial Inform Sci 40(8):15. https://doi.org/10.5194/isprsarchives-XL-8-15-2014

    Article  Google Scholar 

  • Bilwa LM, Yanthan MA, Madesh P, Hutti B (2015) Identification of potential landslide hazard zonation mapping using geoinformatics for Kohima region, Nagaland, India. Int J Innovative Sci Eng Technol 2(11):1–10

    Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping.

  • Chakraborty A, Goswami D (2017) Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN). Arab J Geosci 10(17):1–11. https://doi.org/10.1007/s12517-017-3167-x

    Article  Google Scholar 

  • Chandel V, Brar KK, Chauhan Y (2011) RS & GIS based landslide hazard zonation of mountainous terrains a study from Middle Himalayan Kullu District, Himachal Pradesh, India. Int J Geomat Geosci 2(1):121–132

    Google Scholar 

  • Chauhan S, Sharma M, Arora MK (2010a) Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides 7(4):411–423. https://doi.org/10.1007/s10346-010-0202-3

    Article  Google Scholar 

  • Chauhan S, Sharma M, Arora MK, Gupta NK (2010b) Landslide susceptibility zonation through ratings derived from artificial neural network. Int J Appl Earth Obs Geoinf 12(5):340–350. https://doi.org/10.1016/j.jag.2010.04.006

    Article  Google Scholar 

  • Chawla A, Chawla S, Pasupuleti S, Rao ACS, Sarkar K, Dwivedi R (2018) Landslide susceptibility mapping in Darjeeling Himalayas. India Adv Civil Eng. https://doi.org/10.1155/2018/6416492

    Article  Google Scholar 

  • Chawla A, Pasupuleti S, Chawla S, Rao ACS, Sarkar K, Dwivedi R (2019) Landslide susceptibility zonation mapping: a case study from Darjeeling District, eastern Himalayas, India. J Indian Soc Remote Sens 47(3):497–511. https://doi.org/10.1007/s12524-018-0916-6

    Article  Google Scholar 

  • Chen S, Miao Z, Wu L, He Y (2020) Application of an incomplete landslide inventory and one class classifier to earthquake-induced landslide susceptibility mapping. IEEE J Selected Topics in Appl Earth Observ Remote Sens 13:1649–1660

    Article  Google Scholar 

  • Chingkhei RK (2018) Landslide Zonation in Manipur Using Remote Sensing and GIS Technologies. In: Development and Disaster Management (pp. 169–186). Palgrave Macmillan, Singapore. https://doi.org/10.1007/978-981-10-8485-0_12

  • Chowdhuri I, Pal SC, Arabameri A, Ngo PTT, Chakrabortty R, Malik S et al (2020) Ensemble approach to develop landslide susceptibility map in landslide dominated Sikkim Himalayan region. India Environ Earth Sci 79(20):1–28. https://doi.org/10.1007/s12665-020-09227-5

    Article  Google Scholar 

  • Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472. https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b

    Article  Google Scholar 

  • Crozier MJ (1986) Landslides: causes, consequences & environment. Taylor & Francis

  • Dagdelenler G, Nefeslioglu HA, Gokceoglu C (2016) Modification of seed cell sampling strategy for landslide susceptibility mapping: an application from the Eastern part of the Gallipoli Peninsula (Canakkale, Turkey). Bull Eng Geol Env 75(2):575–590. https://doi.org/10.1007/s10064-015-0759-0

    Article  Google Scholar 

  • Das I, Sahoo S, van Westen C, Stein A, Hack R (2010) Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology 114(4):627–637. https://doi.org/10.1016/j.geomorph.2009.09.023

    Article  Google Scholar 

  • Dutta PJ, Sarma S, Laskar JJ (2017) Predicting the Spatial Distribution of Rain-Induced Shallow Landslides by applying GIS and Geocomputational Techniques: a case study from North East India. Int J Recent and Innovat Trends in Comput Commun 5(5):1306–1319

    Google Scholar 

  • EM-DAT International Disaster Database (http://www.em-dat.net/). Université Catholique de Louvain, Brussels, Belgium (Accessed on 06 September 2020)

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102(3–4):99–111. https://doi.org/10.1016/j.enggeo.2008.03.014

    Article  Google Scholar 

  • Francisci D (2021) A python script for geometric interval classification in QGIS: a useful tool for archaeologists. Environ Sci Proceed 10(1):1. https://doi.org/10.3390/environsciproc2021010001

    Article  Google Scholar 

  • Ghorbanzadeh O, Meena SR, Blaschke T, Aryal J (2019) UAV-based slope failure detection using deep-learning convolutional neural networks. Remote Sens 11(17):2046. https://doi.org/10.3390/rs11172046

    Article  Google Scholar 

  • Ghosh K, Bandyapadhyay S, De SK (2013) Regional scale landslide risk assessment using fuzzy set approach: a case study on Dhalai District, Tripura. Transaction. J Institute of Indian Geograph 2:82–89

    Google Scholar 

  • Ghosh K, Bandyopadhyay S, De SK (2017) A comparative evaluation of weight-rating and analytical hierarchical (AHP) for Landslide Susceptibility Mapping in Dhalai District, Tripura. In Environment and Earth Observation (pp. 175–193). Springer, Cham. https://doi.org/10.1007/978-3-319-46010-9_12

  • Ghosh S, Carranza EJM, van Westen CJ, Jetten VG, Bhattacharya DN (2011) Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the Darjeeling Himalayas (India). Geomorphology 131(1–2):35–56. https://doi.org/10.1016/j.geomorph.2011.04.019

    Article  Google Scholar 

  • Ghosh S, van Westen CJ, Carranza EJM, Jetten VG, Cardinali M, Rossi M, Guzzetti F (2012) Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities. Eng Geol 128:49–62. https://doi.org/10.1016/j.enggeo.2011.03.016

    Article  Google Scholar 

  • Gupta SK, Shukla DP, Thakur M (2018) Selection of weightages for causative factors used in preparation of landslide susceptibility zonation (LSZ). Geomat Nat Haz Risk 9(1):471–487. https://doi.org/10.1080/19475705.2018.1447027

    Article  Google Scholar 

  • Guzzetti F (2002) Landslide hazard assessment and risk evaluation: Limits and prospectives. In: Proceedings of the 4th EGS Plinius Conference, Mallorca, Spain (pp. 2–4).

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study. Central Italy Geomorphol 31(1–4):181–216. https://doi.org/10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M et al (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112(1–2):42–66. https://doi.org/10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72(1–4):272–299. https://doi.org/10.1016/j.geomorph.2005.06.002

    Article  Google Scholar 

  • Harp EL, Keefer DK, Sato HP, Yagi H (2011) Landslide inventories: the essential part of seismic landslide hazard analyses. Eng Geol 122(1–2):9–21. https://doi.org/10.1016/j.enggeo.2010.06.013

    Article  Google Scholar 

  • Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43(2):245–256. https://doi.org/10.1007/s11069-006-9104-z

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194. https://doi.org/10.1007/s10346-013-0436-y

    Article  Google Scholar 

  • Hussain G, Singh Y, Singh K, Bhat GM (2019) Landslide susceptibility mapping along national highway-1 in Jammu and Kashmir State (India). Innovat Infrastruct Solutions 4(1):1–17. https://doi.org/10.1007/s41062-019-0245-9

    Article  Google Scholar 

  • IndiaWRIS (India Water Resource Information System), Ministry of Jal Shakti, Govt. of India (https://indiawris.gov.in, Accessed on 12 January 2020)

  • Jain AK, Banarjee DM (2020) The Indian subcontinent: its tectonics map. Proc Indian Natn Sci Acad 86:77–875

    Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85(3–4):347–366. https://doi.org/10.1016/j.enggeo.2006.03.004

    Article  Google Scholar 

  • Kanungo DP, Sarkar S, Sharma S (2011) Combining neural network with fuzzy, certainty factor and likelihood ratio concepts for spatial prediction of landslides. Nat Hazards 59(3):1491. https://doi.org/10.1007/s11069-011-9847-z

    Article  Google Scholar 

  • Kumar A, Sharma RK, Bansal VK (2018a) Landslide hazard zonation using analytical hierarchy process along National Highway-3 in mid Himalayas of Himachal Pradesh. India Environ Earth Sci 77(20):1–19. https://doi.org/10.1007/s12665-018-7896-2

    Article  Google Scholar 

  • Kumar A, Sharma RK, Bansal VK (2018b) GIS-Based Landslide Hazard Mapping Along NH-3 in Mountainous Terrain of Himachal Pradesh, India Using Weighted Overlay Analysis. In International Conference on Sustainable Waste Management through Design (pp. 59–67). Springer, Cham. https://doi.org/10.1007/978-3-030-02707-0_9

  • Kumar R, Anbalagan R (2016) Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J Geol Soc India 87(3):271–286. https://doi.org/10.1007/s12594-016-0395-8

    Article  Google Scholar 

  • Lallianthanga RK, Lalbiakmawia F (2013a) Micro-Level Landslide Hazard Zonation of Saitual Town, Mizoram, India Using Remote Sensing and GIS Techniques. Int J Eng Sci Res Technol 2(9):2531–2546

    Google Scholar 

  • Lallianthanga RK, Lalbiakmawia F (2013b) Microlevel landslide hazard zonation of serchhip town, Mizoram, India using high resolution satellite data. Sci Vis 13(1):14–23

    Google Scholar 

  • Lallianthanga RK, Lalbiakmawia F (2014a) Landslide Susceptibility Zonation of Kolasib District, Mizoram, India Using Remote Sensing And GIS Techniques. International Journal of Engineering Sciences & Research Technology, ISSN, 2277–9655.

  • Lallianthanga RK, Laltanpuia ZD (2014b) Landslide Hazard Zonation Mapping of Hnahthial Town, Mizoram, India Using Remote Sensing & GIS.

  • Laltlankima LF (2016) Landslide hazard zonation along national highway between Aizawl city and Lengpui airport. Mizoram, India Using Geospatial Techniques. https://doi.org/10.5281/zenodo.57980

  • Landslide inventory database of India (https://bhukosh.gsi.gov.in/, Accessed on 10 January 2021)

  • Lima P, Steger S, Glade T (2021) Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: a national-scale assessment for Austria. Landslides 18(11):3531–3546. https://doi.org/10.1007/s10346-021-01693-7

    Article  Google Scholar 

  • Lin L, Lin Q, Wang Y (2017) Landslide susceptibility mapping on a global scale using the method of logistic regression. Nat Hazard 17(8):1411–1424. https://doi.org/10.5194/nhess-17-1411-2017

    Article  Google Scholar 

  • Lombardo L, Tanyas H, Huser R, Guzzetti F, Castro-Camilo D (2021) Landslide size matters: a new data-driven, spatial prototype. Eng Geol 293:106288. https://doi.org/10.1016/j.enggeo.2021.106288

    Article  Google Scholar 

  • Maheshwari BK, Kanungo DP (2020) GIS-based pre-and post-earthquake landslide susceptibility zonation with reference to 1999 Chamoli earthquake. J Earth Syst Sci 129(1):1–20. https://doi.org/10.1007/s12040-019-1319-y

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29(6):687–711. https://doi.org/10.1002/esp.1064

    Article  Google Scholar 

  • Mandal S, Maiti R (2014) Role of lithological composition and lineaments in Landsliding: a case study of SHIVKHOLA WATERSHED, DARJEELING HIMALAYA. Int J Geol Earth Environ Sci 4(1):126–132

    Google Scholar 

  • Mandal S, Mandal K (2018a) Bivariate statistical index for landslide susceptibility mapping in the Rorachu river basin of eastern Sikkim Himalaya. India Spatial Inform Res 26(1):59–75. https://doi.org/10.1007/s41324-017-0156-9

    Article  Google Scholar 

  • Mandal S, Mandal K (2018b) Modeling and mapping landslide susceptibility zones using GIS based multivariate binary logistic regression (LR) model in the Rorachu river basin of eastern Sikkim Himalaya. India Modeling Earth Syst Environ 4(1):69–88. https://doi.org/10.1007/s40808-018-0426-0

    Article  Google Scholar 

  • Mandal SP, Chakrabarty A, Maity P (2018) Comparative evaluation of information value and frequency ratio in landslide susceptibility analysis along national highways of Sikkim Himalaya. Spat Inf Res 26(2):127–141. https://doi.org/10.1007/s41324-017-0160-0

    Article  Google Scholar 

  • Martha TR, van Westen CJ, Kerle N, Jetten V, Kumar KV (2013) Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorphology 184:139–150. https://doi.org/10.1016/j.geomorph.2012.12.001

    Article  Google Scholar 

  • Meena SR, Mishra BK, Tavakkoli Piralilou S (2019) A hybrid spatial multi-criteria evaluation method for mapping landslide susceptible areas in kullu valley, himalayas. Geosciences 9(4):156. https://doi.org/10.3390/geosciences9040156

    Article  Google Scholar 

  • Mitra D, Bhandery C, Mukhopadhyay A, Chanda A, Hazra S (2018) Landslide risk assessment in Darjeeling hills using multi-criteria decision support system: a Bayesian network approach. In: Disaster risk governance in India and cross cutting issues (pp. 361–386). Springer, Singapore. https://doi.org/10.1007/978-981-10-3310-0_18

  • Mondal S, Mandal S (2019) Landslide susceptibility mapping of Darjeeling Himalaya, India using index of entropy (IOE) model. Appl Geomat 11(2):129–146. https://doi.org/10.1007/s12518-018-0248-9

    Article  Google Scholar 

  • Mousavi SZ, Kavian A, Soleimani K, Mousavi SR, Shirzadi A (2011) GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomat Nat Haz Risk 2(1):33–50. https://doi.org/10.1080/19475705.2010.532975

    Article  Google Scholar 

  • Murgese D, Marchisio D, Notaro P, Vigna R (2015) Broad Gauge Rail Link Between Sivok in West Bengal and Rangpo in the State of Sikkim with Future Connectivity to Gangtok (Sikkim)—Shallow-Landslide Susceptibility Map. In Engineering Geology for Society and Territory-Volume 2 (pp. 979–983). Springer, Cham.

  • National Disaster Management Guidelines—Management of Landslides and Snow Avalanches, (2009). A publication of the National Disaster Management Authority, Government of India. June 2009, New Delhi.

  • Onagh M, Kumra VK, Rai PK (2012) Landslide susceptibility mapping in a part of Uttarkashi district (India) by multiple linear regression method. Int J Geol, Earth and Environ Sci 2(2):102–120

    Google Scholar 

  • Pal SC, Das B, Malik S (2019) Potential landslide vulnerability zonation using integrated analytic hierarchy process and GIS technique of Upper Rangit Catchment Area, West Sikkim, India. J Indian Soc Remote Sens 47(10):1643–1655. https://doi.org/10.1007/s12524-019-01009-2

    Article  Google Scholar 

  • Panchal S, Shrivastava AK (2020) Landslide Susceptibility Mapping Along Highway Corridors in GIS Environment. In Smart Cities—Opportunities and Challenges (pp. 79–89). Springer, Singapore. https://doi.org/10.1007/978-981-15-2545-2_8

  • Pandey DD, Singh KP, Sarda VK (2016a) GIS based inventory study of landslide hazard zonation in LahaulSpiti Valley between Rohtang to Baralacha La, Himachal Pradesh, India. Int J Earth Sci Eng 9:2847–2854

    Google Scholar 

  • Pandey VK, Sharma KK, Bandooni SK (2016b) Characteristics of Large Landslides and Application of Frequency Ratio Model for Susceptibility Assessment, Lower Jalal Catchment (Himachal Pradesh). Thematics Journal of Geography, 1(2). http://dx.doi.org/https://doi.org/10.20431/2454-8685.0401004

  • Pandey VK, Sharma KK, Pourghasemi HR, Bandooni SK (2019) Sedimentological characteristics and application of machine learning techniques for landslide susceptibility modelling along the highway corridor Nahan to Rajgarh (Himachal Pradesh). India Catena 182:104150. https://doi.org/10.1016/j.catena.2019.104150

    Article  Google Scholar 

  • Pareta K, Pareta U (2012) Landslide modeling and susceptibility mapping of Giri river watershed, Himachal Pradesh (India). Int J Sci Technol 1(2):91–104

    Google Scholar 

  • Pathak D (2016) Knowledge based landslide susceptibility mapping in the Himalayas. Geoenvironm Dis 3(1):1–11. https://doi.org/10.1186/s40677-016-0042-0

    Article  Google Scholar 

  • Patil AS, Bhadra BK, Panhalkar SS, Patil PT (2020) Landslide susceptibility mapping using landslide numerical risk factor model and landslide inventory prepared through OBIA in Chenab Valley, Jammu and Kashmir (India). J Indian Soc Remote Sens 48(3):431–449. https://doi.org/10.1007/s12524-019-01092-5

    Article  Google Scholar 

  • Pattanaik A, Singh TK, Saxena M, Prusty BG (2019) Landslide Susceptibility Mapping Using AHP Along Mechuka Valley, Arunachal Pradesh, India. In: Proceedings of International Conference on Remote Sensing for Disaster Management (pp. 635–651). Springer, Cham. https://doi.org/10.1007/978-3-319-77276-9_56

  • Peethambaran B, Anbalagan R, Shihabudheen KV, Goswami A (2019) Robustness evaluation of fuzzy expert system and extreme learning machine for geographic information system-based landslide susceptibility zonation: a case study from Indian Himalaya. Environ Earth Sci 78(6):1–20. https://doi.org/10.1007/s12665-019-8225-0

    Article  Google Scholar 

  • Pham BT, Jaafari A, Prakash I, Bui DT (2019) A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling. Bull Eng Geol Env 78(4):2865–2886. https://doi.org/10.1007/s10064-018-1281-y

    Article  Google Scholar 

  • Pham BT, Pradhan B, Bui DT, Prakash I, Dholakia MB (2016) A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environ Model Softw 84:240–250. https://doi.org/10.1016/j.envsoft.2016.07.005

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Indra P, Dholakia M (2015a) A comparison study of predictive ability of support vector machines and naive bayes tree methods in landslide susceptibility assessment at an area between Tehri Garhwal and Pauri Garhwal, Uttarakhand state (India) using GIS. In: national symposium on geomatics for digital India and annual conventions of ISG & ISRS, Jaipur (India).

  • Pham BT, Tien Bui D, Indra P, Dholakia M (2015b) Landslide susceptibility assessment at a part of Uttarakhand Himalaya, India using GIS–based statistical approach of frequency ratio method. Int J Eng Res Technol 4(11):338–344

    Google Scholar 

  • Phukon P, Chetia D, Das P (2012) Landslide susceptibility assessment in the Guwahati city, Assam using analytic hierarchy process (AHP) and geographic information system (GIS). Int J Comput Appl Eng Sci 2:1–6

    Google Scholar 

  • Ramakrishnan D, Singh TN, Verma AK, Gulati A, Tiwari KC (2013) Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya. India Natural Hazards 65(1):315–330. https://doi.org/10.1007/s11069-012-0365-4

    Article  Google Scholar 

  • Raman R, Punia M (2012) The application of GIS-based bivariate statistical methods for landslide hazards assessment in the upper Tons river valley, Western Himalaya, India. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 6(3), 145–161. https://doi.org/10.1080/17499518.2011.637504

  • Rawat JS, Joshi RC (2012) Remote-sensing and GIS-based landslide-susceptibility zonation using the landslide index method in Igo River Basin, Eastern Himalaya. India Int J Remote Sens 33(12):3751–3767. https://doi.org/10.1080/01431161.2011.633121

    Article  Google Scholar 

  • Rawat MS, Rawat BS, Joshi V, Kimothi MM (2012) Statistical analysis of Landslide in South district, Sikkim, India: using remote sensing and GIS. J Environ Sci, Toxicol Food Technol 2(3):47–61

    Google Scholar 

  • Rossi M, Cardinali M, Fiorucci F, Marchesini I, Mondini AC, Santangelo M et al (2012) A tool for the estimation of the distribution of landslide area in R. In EGU General Assembly Conference Abstracts (p. 9438).

  • Roy J, Saha S (2019) Landslide susceptibility mapping using knowledge driven statistical models in Darjeeling District, West Bengal. India Geoenviron Dis 6(1):1–18. https://doi.org/10.1186/s40677-019-0126-8

    Article  Google Scholar 

  • Roy J, Saha S, Arabameri A, Blaschke T, Bui DT (2019) A novel ensemble approach for landslide susceptibility mapping (LSM) in Darjeeling and Kalimpong districts, West Bengal. India Remote Sensing 11(23):2866. https://doi.org/10.3390/rs11232866

    Article  Google Scholar 

  • Roy P, Martha TR, Khanna K, Jain N, Kumar KV (2022) Time and path prediction of landslides using InSAR and flow model. Remote Sens Environ 271:112899. https://doi.org/10.1016/j.rse.2022.112899

    Article  Google Scholar 

  • Saha A, Saha S (2020) Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in landslide susceptibility modelling: a study on Kurseong region of Darjeeling Himalaya, India. Remote Sens Appl: Soc Environ 19:100323. https://doi.org/10.1016/j.rsase.2020.100323

    Article  Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation—with a case study in the Himalayas. Landslides 2(1):61–69. https://doi.org/10.1007/s10346-004-0039-8

    Article  Google Scholar 

  • Sarkar S, Kanungo DP (2004) An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm Eng Remote Sens 70(5):617–625

    Article  Google Scholar 

  • Sarkar S, Roy AK, Martha TR (2013) Landslide susceptibility assessment using information value method in parts of the Darjeeling Himalayas. J Geol Soc India 82(4):351–362. https://doi.org/10.1007/s12594-013-0162-z

    Article  Google Scholar 

  • Sarkar S, Roy AK, Raha P (2016) Deterministic approach for susceptibility assessment of shallow debris slide in the Darjeeling Himalayas, India. CATENA 142:36–46. https://doi.org/10.1016/j.catena.2016.02.009

    Article  Google Scholar 

  • Sarma CP, Dey A, Krishna AM (2020a) Influence of digital elevation models on the simulation of rainfall-induced landslides in the hillslopes of Guwahati. India Eng Geol 268:105523. https://doi.org/10.1016/j.enggeo.2020.105523

    Article  Google Scholar 

  • Sarma CP, Dey A, Krishna AM (2020b) Investigation of Rainfall-Induced Landslides at the Hillslopes of Guwahati Region, Assam. In: Geotechnics for Natural Disaster Mitigation and Management (pp. 75–87). Springer, Singapore. https://doi.org/10.1007/978-981-13-8828-6_7

  • Segoni S, Lagomarsino D, Fanti R, Moretti S, Casagli N (2015) Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system. Landslides 12(4):773–785. https://doi.org/10.1007/s10346-014-0502-0

    Article  Google Scholar 

  • Sema HV, Guru B, Veerappan R (2017) Fuzzy gamma operator model for preparing landslide susceptibility zonation mapping in parts of Kohima Town, Nagaland. India Model Earth Syst Environ 3(2):499–514. https://doi.org/10.1007/s40808-017-0317-9

    Article  Google Scholar 

  • Sharma LP, Patel N, Ghose MK, Debnath P (2012a) Geo-spatial technology based landslide vulnerability assessment and zonation in Sikkim Himalayas in India. J Geomat 6(2):51–57

    Google Scholar 

  • Sharma LP, Patel N, Ghose MK, Debnath P (2012b) Influence of Shannon’s entropy on landslide-causing parameters for vulnerability study and zonation—a case study in Sikkim. India Arabian J Geosci 5(3):421–431. https://doi.org/10.1007/s12517-010-0205-3

    Article  Google Scholar 

  • Sharma RK, Mehta BS (2012) Macro-zonation of landslide susceptibility in Garamaura-Swarghat-Gambhar section of national highway 21, Bilaspur District, Himachal Pradesh (India). Nat Hazards 60(2):671–688. https://doi.org/10.1007/s11069-011-0041-0

    Article  Google Scholar 

  • Singh CD, Behera KK, Rocky WS (2011) Landslide susceptibility along NH-39 between Karong and Mao, Senapati district, Manipur. J Geol Soc India 78(6):559–570. https://doi.org/10.1007/s12594-011-0120-6

    Article  Google Scholar 

  • Singh CD, Kohli A, Kumar P (2014) Comparison of results of BIS and GSI guidelines on macrolevel landslide hazard zonation—A case study along highway from Bhalukpong to Bomdila, West Kameng district, Arunachal Pradesh. J Geol Soc India 83(6):688–696

    Article  Google Scholar 

  • Singh K, Kumar V (2017) Landslide hazard mapping along national highway-154A in Himachal Pradesh, India using information value and frequency ratio. Arab J Geosci 10(24):1–18. https://doi.org/10.1007/s12517-017-3315-3

    Article  Google Scholar 

  • Singh K, Kumar V (2018) Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya. J Mountain Sci. https://doi.org/10.1007/s11629-017-4634-2

    Article  Google Scholar 

  • Singh KM, Singh RH (2017) Landslide studies along Tengnoupal-sita road section. Manipur, India

    Google Scholar 

  • Singh MS, Saikhom V, Raju PLN, Prasad SS (2019) Route alignment planning in hilly terrain using geospatial technology: a case study in parts of Arunachal Pradesh India. J Geomat 13(2):195–202

    Google Scholar 

  • Srivastava V, Srivastava HB, Lakhera RC (2010) Fuzzy gamma based geomatic modelling for landslide hazard susceptibility in a part of Tons river valley, northwest Himalaya, India. Geomat Nat Haz Risk 1(3):225–242. https://doi.org/10.1080/19475705.2010.490103

    Article  Google Scholar 

  • Süzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45(5):665–679

    Article  Google Scholar 

  • Tanyaş H, Kirschbaum D, Lombardo L (2021) Capturing the footprints of ground motion in the spatial distribution of rainfall-induced landslides. Bull Eng Geol Env 80(6):4323–4345. https://doi.org/10.1007/s10064-021-02238-x

    Article  Google Scholar 

  • Trigila A, Frattini P, Casagli N, Catani F, Crosta G, Esposito C et al (2013) Landslide susceptibility mapping at national scale: the Italian case study. In: Landslide science and practice (pp. 287–295). Springer, Berlin, Heidelberg.

  • USGS (United States Geological Survey) earthquake hazard programme (https://USGS Earthquake Hazards Program, Accessed on 19 January 2020)

  • Valdiya KS (2002) Emergence and evolution of Himalaya: reconstructing history in the light of recent studies. Prog Phys Geogr 26(3):360–399

    Article  Google Scholar 

  • Varnes DJ (1958) Landslide types and processes. Landslides and Eng Practice 24:20–47

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. Special Rep 176:11–33

    Google Scholar 

  • Veerappan R, Negi A, Siddan A (2017) Landslide susceptibility mapping and comparison using frequency ratio and analytical hierarchy process in part of NH-58, Uttarakhand, India. In: Workshop on World Landslide Forum (pp. 1081–1091). Springer, Cham. https://doi.org/10.1007/978-3-319-53498-5_123

  • Versain LD (2019) Bi-variate statistical approach in landslide hazard zonation: central Himalayas of Himachal Pradesh, India. Int J Appl Eng Res 14(2):415–428

    Google Scholar 

  • Versain LD, Banshtu RS, Pandey DD (2019) Comparative evaluation of GIS based landslide hazard zonation maps using different approaches. J Geol Soc India 93(6):684–692. https://doi.org/10.1007/s12594-019-1247-0

    Article  Google Scholar 

  • Yhoshü K, Krishnaiah YV (2017) Evaluation of landslide hazard of Kohima, India

Download references

Acknowledgements

The authors are thankful to the Director, CSIR-Central Building Research Institute, Roorkee, India, for granting permission to publish this work. The first author acknowledges University Grants Commission (New Delhi, India) for providing the fellowship under Junior Research Fellowship (JRF) Scheme [UGC-Ref. No. 3511/(NET-JULY 2018)] and AcSIR (Ghaziabad, India) for providing an opportunity to carry out this doctoral research.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Sarkar.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11069_2022_5554_MOESM1_ESM.docx

Ancillary materials – (1) list of articles used for this review (the list is available in APA reference style); (2) List of journals published LSZ works in the Indian Himalaya; (3) Identified landslide types mentioned in literature; (4) List of landslide causative factors used for LSZ assessment (DOCX 70 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Sarkar, S. & Kanungo, D.P. A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya. Nat Hazards 115, 23–72 (2023). https://doi.org/10.1007/s11069-022-05554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05554-x

Keywords

Navigation