Skip to main content

Advertisement

Log in

A new look to coma from the viewpoint of nonlinear dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we propose a simple nonlinear network of consciousness that demonstrates how the trauma to the ascending reticular formation could lead to coma. Studies show that the healthy brain works at the edge of chaos. Coma, as a disorder, is a stable state that the inherently chaotic brain could trap in. There are several brain areas playing a critical role in consciousness. A trauma to each of these areas could lead to disruption of conscious experience. Ascending reticular formation, which plays a key role in consciousness, is the focus area of this work. We study the effect of trauma on the connection between the reticular formation and the rest of consciousness network that could lead to stable behavior of the brain, i.e. coma. The effect of increased inhibitory neurotransmitter on the occurrence of unconsciousness is displayed as well. We also show how a local boost would affect a brain in the coma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aarabi, A., He, B.: Seizure prediction in patients with focal hippocampal epilepsy. Clin. Neurophysiol. 128(7), 1299–1307 (2017)

    Article  Google Scholar 

  2. Afraimovich, V.S., Muezzinoglu, M.K., Rabinovich, M.I.: Metastability and transients in brain dynamics: Problems and rigorous results. Long-Range Interactions. Stochasticity and Fractional Dynamics, pp. 133–175. Springer, Berlin (2010)

  3. Aram, Z., Jafari, S., Ma, J., Sprott, J.C., Zendehrouh, S., Pham, V.T.: Using chaotic artificial neural networks to model memory in the brain. Commun. Nonlinear Sci. Numer. Simul. 44, 449–459 (2017)

    Article  MathSciNet  Google Scholar 

  4. Baars, B.J.: Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog. Brain Res. 150, 45–53 (2005)

    Article  Google Scholar 

  5. Baghdadi, G., Jafari, S., Sprott, J., Towhidkhah, F., Golpayegani, M.H.: A chaotic model of sustaining attention problem in attention deficit disorder. Commun. Nonlinear Sci. Numer. Simul. 20(1), 174–185 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bob, P.: Chaos, brain and divided consciousness. Acta Univ. Carol. Med. Monogr. 153, 9–80 (2007)

    Google Scholar 

  7. Bob, P.: Chaos, cognition and disordered brain. Activitas Nerv. Super. 50(4), 114–117 (2008)

    Article  Google Scholar 

  8. Bragin, V., Vagaitsev, V., Kuznetsov, N., Leonov, G.: Algorithms for finding hidden oscillations in nonlinear systems. the aizerman and kalman conjectures and chua’s circuits. J. Comput. Syst. Sci. Int. 50(4), 511 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezetskyi, S., Dudkowski, D., Kapitaniak, T.: Rare and hidden attractors in van der pol-duffing oscillators. Eur. Phys. J. Spec. Top. 224(8), 1459–1467 (2015)

    Article  Google Scholar 

  10. Brown, E.N., Lydic, R., Schiff, N.D.: General anesthesia, sleep, and coma. N. Engl. J. Med. 363(27), 2638–2650 (2010)

    Article  Google Scholar 

  11. Chialvo, D.R.: Critical brain networks. Phys. A 340(4), 756–765 (2004)

    Article  Google Scholar 

  12. Chialvo, D.R.: Emergent complex neural dynamics. Nat. Phys. 6(10), 744 (2010)

    Article  Google Scholar 

  13. Crone, J.S., Lutkenhoff, E.S., Bio, B.J., Laureys, S., Monti, M.M.: Testing proposed neuronal models of effective connectivity within the cortico-basal ganglia-thalamo-cortical loop during loss of consciousness. Cereb. Cortex 27(4), 2727–2738 (2017)

    Google Scholar 

  14. De Sousa, A.: Towards an integrative theory of consciousness: part 1 (neurobiological and cognitive models). Mens Sana Monogr. 11(1), 100 (2013)

    Article  Google Scholar 

  15. Di Perri, C., Stender, J., Laureys, S., Gosseries, O.: Functional neuroanatomy of disorders of consciousness. Epilepsy Behav. 30, 28–32 (2014)

    Article  Google Scholar 

  16. Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dudkowski, D., Prasad, A., Kapitaniak, T.: Perpetual points and hidden attractors in dynamical systems. Phys. Lett. A 379(40–41), 2591–2596 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Edlow, B.L., Haynes, R.L., Takahashi, E., Klein, J.P., Cummings, P., Benner, T., Greer, D.M., Greenberg, S.M., Wu, O., Kinney, H.C., et al.: Disconnection of the ascending arousal system in traumatic coma. J. Neuropathol. Exp. Neurol. 72(6), 505–523 (2013)

    Article  Google Scholar 

  19. Edlow, B.L., Takahashi, E., Wu, O., Benner, T., Dai, G., Bu, L., Grant, P.E., Greer, D.M., Greenberg, S.M., Kinney, H.C., et al.: Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J. Neuropathol. Exp. Neurol 71(6), 531–546 (2012)

    Article  Google Scholar 

  20. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17(4), 257–278 (1955)

    Article  Google Scholar 

  21. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Nat. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005)

    Article  Google Scholar 

  22. Guldenmund, P., Demertzi, A., Boveroux, P., Boly, M., Vanhaudenhuyse, A., Bruno, M.A., Gosseries, O., Noirhomme, Q., Brichant, J.F., Bonhomme, V., et al.: Thalamus, brainstem and salience network connectivity changes during propofol-induced sedation and unconsciousness. Brain Connect. 3(3), 273–285 (2013)

    Article  Google Scholar 

  23. Haghighi, H.S., Markazi, A.: A new description of epileptic seizures based on dynamic analysis of a thalamocortical model. Sci. Rep. 7(1), 13615 (2017)

    Article  Google Scholar 

  24. Hilborn, R.C.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press on Demand, Oxford (2000)

    Book  MATH  Google Scholar 

  25. Hindmarsh, J.L., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. In: Proceedings of the Royal Society B, vol. 221, pp. 87–102. The Royal Society, London (1984)

  26. Hodgkin, A.L.: The croonian lecture: Ionic movements and electrical activity in giant nerve fibres. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 148(930), 1–37 (1958)

    Article  Google Scholar 

  27. Hodgkin, A.L., Huxley, A.F.: The components of membrane conductance in the giant axon of loligo. J. Physiol. 116(4), 473–496 (1952)

    Article  Google Scholar 

  28. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  29. Jafari, S., Ansari, Z., Golpayegani, S.M.R.H., Gharibzadeh, S.: Is attention a period window in the chaotic brain? J. Neuropsychiatry Clin. Neurosci. 25(1), E05–E05 (2013)

    Article  Google Scholar 

  30. Jafari, S., Pham, V.T., Golpayegani, S.M.R.H., Moghtadaei, M., Kingni, S.T.: The relationship between chaotic maps and some chaotic systems with hidden attractors. Int. J. Bifurc. Chaos 26(13), 1650211 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jafari, S., Sprott, J.: Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57, 79–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jafari, S., Sprott, J., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1469–1476 (2015)

    Article  Google Scholar 

  33. Jang, S.H., Kim, S.H., Lim, H.W., Yeo, S.S.: Recovery of injured lower portion of the ascending reticular activating system in a patient with traumatic brain injury. Am. J. Phys. Med. Rehabilit. 94(3), 250–253 (2015)

    Article  Google Scholar 

  34. Jang, S.H., Kwon, H.G.: The ascending reticular activating system from pontine reticular formation to the hypothalamus in the human brain: a diffusion tensor imaging study. Neurosci. Lett. 590, 58–61 (2015)

    Article  Google Scholar 

  35. Jang, S.H., Kwon, H.G.: The direct pathway from the brainstem reticular formation to the cerebral cortex in the ascending reticular activating system: a diffusion tensor imaging study. Neurosci. Lett. 606, 200–203 (2015)

    Article  Google Scholar 

  36. Kapitaniak, T., Leonov, G.: Multistability: uncovering hidden attractors

  37. Kelso, J.S., Fuchs, A.: Self-organizing dynamics of the human brain: critical instabilities and šil’nikov chaos. Chaos Interdiscip. J. Nonlinear Sci. 5(1), 64–69 (1995)

    Article  Google Scholar 

  38. King, C.: Quantum mechanics, chaos and the conscious brain. J. Mind Behav. 18, 155–170 (1997)

    MathSciNet  Google Scholar 

  39. Koch, C., Massimini, M., Boly, M., Tononi, G.: Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17(5), 307 (2016)

    Article  Google Scholar 

  40. Kuznetsov, N., Leonov, G., Seledzhi, S.: Hidden oscillations in nonlinear control systems. IFAC Proc. 44(1), 2506–2510 (2011)

    Article  Google Scholar 

  41. Laureys, S.: The neural correlate of (un) awareness: lessons from the vegetative state. Trends Cognit. Sci. 9(12), 556–559 (2005)

    Article  Google Scholar 

  42. Laureys, S., Schiff, N.D.: Coma and consciousness: paradigms (re) framed by neuroimaging. Neuroimage 61(2), 478–491 (2012)

    Article  Google Scholar 

  43. Lehnertz, K., Elger, C.E.: Can epileptic seizures be predicted? evidence from nonlinear time series analysis of brain electrical activity. Phys. Rev. Lett. 80(22), 5019 (1998)

    Article  Google Scholar 

  44. Leonov, G., Kuznetsov, N.: Hidden oscillations in dynamical systems. 16 hilbert’s problem, aizerman’s and kalman’s conjectures, hidden attractors in chua’s circuits. J. Math. Sci. 201(5), 645–662 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Leonov, G., Kuznetsov, N., Mokaev, T.: Hidden attractor and homoclinic orbit in lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. Numer. Simul. 28(1–3), 166–174 (2015)

    Article  MathSciNet  Google Scholar 

  46. Leonov, G.A., Kuznetsov, N.V.: Analytical-Numerical Methods for Hidden Attractors’ Localization: The 16th Hilbert Problem, Aizerman and Kalman Conjectures, and Chua Circuits. Numerical Methods for Differential Equations. Optimization, and Technological Problems, pp. 41–64. Springer, Berlin (2013)

  47. Leonov, G.A., Kuznetsov, N.V.: Prediction of Hidden Oscillations Existence in Nonlinear Dynamical Systems: Analytics and Simulation. Nostradamus 2013: Prediction. Modeling and Analysis of Complex Systems, pp. 5–13. Springer, Berlin (2013)

  48. Li, X., Xi, Q.: Oscillatory and asymptotic properties of impulsive difference equations with time-varying delays. Int. J. Differ. Equ. 4(2), 201–209 (2009)

    MathSciNet  Google Scholar 

  49. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58(12), 2038–2045 (2015)

    Article  Google Scholar 

  50. Ma, J., Wang, C.N., Jin, W.Y., Wu, Y.: Transition from spiral wave to target wave and other coherent structures in the networks of hodgkin-huxley neurons. Appl. Math. Comput. 217(8), 3844–3852 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Ma, J., Wu, F., Hayat, T., Zhou, P., Tang, J.: Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media. Phys. A 486, 508–516 (2017)

    Article  MathSciNet  Google Scholar 

  52. Ma, J., Wu, F., Wang, C.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod. Phys. B 31(2), 1650251 (2017)

    Article  MathSciNet  Google Scholar 

  53. Ma, J., Xu, J.: An introduction and guidance for neurodynamics. Sci. Bull. 60(22), 1969–1971 (2015)

    Article  Google Scholar 

  54. Martinerie, J., Adam, C., Le Van Quyen, M., Baulac, M., Clemenceau, S., Renault, B., Varela, F.J.: Epileptic seizures can be anticipated by non-linear analysis. Nat. Med. 4(10), 1173 (1998)

    Article  Google Scholar 

  55. McSharry, P.E., Smith, L.A., Tarassenko, L.: Prediction of epileptic seizures: are nonlinear methods relevant? Nat. Med. 9(3), 241 (2003)

    Article  Google Scholar 

  56. Melancon, G., Joanette, Y., Bélair, J.: Chaos, brain, and cognition: Toward a nonlinear order? Brain Cognit. 42(1), 33–36 (2000). https://doi.org/10.1006/brcg.1999.1154

    Article  Google Scholar 

  57. Mikolajewska, E., Mikolajewski, D.: Consciousness disorders as the possible effect of brainstem activity failure-computational approach. J. Health Sci. 2(2), 007–018 (2012)

    Google Scholar 

  58. Minert, A., Devor, M.: Brainstem node for loss of consciousness due to gabaa receptor-active anesthetics. Exp. Neurol. 275, 38–45 (2016)

    Article  Google Scholar 

  59. Molaie, M., Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Simple chaotic flows with one stable equilibrium. Int. J. Bifurc Chaos 23(11), 1350188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  Google Scholar 

  61. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  62. Nazarimehr, F., Saedi, B., Jafari, S., Sprott, J.C.: Are perpetual points sufficient for locating hidden attractors? Int. J. Bifurc. Chaos 27(03), 1750037 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  63. Panahi, S., Aram, Z., Jafari, S., Ma, J., Sprott, J.: Modeling of epilepsy based on chaotic artificial neural network. Chaos Solitons Fractals 105, 150–156 (2017)

    Article  MathSciNet  Google Scholar 

  64. Parvizi, J., Damasio, A.: Consciousness and the brainstem. Cognition 79(1–2), 135–160 (2001)

    Article  Google Scholar 

  65. Parvizi, J., Damasio, A.R.: Neuroanatomical correlates of brainstem coma. Brain 126(7), 1524–1536 (2003)

    Article  Google Scholar 

  66. Perlovsky, L.I., Kozma, R.: Neurodynamics of cognition and consciousness. In: Neurodynamics of Cognition and Consciousness, pp. 1–8. Springer, Berlin (2007)

  67. Rosenblum, W.I.: Immediate, irreversible, posttraumatic coma: a review indicating that bilateral brainstem injury rather than widespread hemispheric damage is essential for its production. J. Neuropathol. Exp. Neurol. 74(3), 198–202 (2015)

    Article  Google Scholar 

  68. Rulkov, N.F.: Regularization of synchronized chaotic bursts. Phys. Rev. Lett. 86(1), 183 (2001)

    Article  Google Scholar 

  69. Sabirov, D., Krasnenkova, M.: Different neurotransmitter therapy in severe traumatic brain injury patients: pilot study–7ap4-1. Eur. J. Anaesthesiol. (EJA) 31, 117 (2014)

  70. Salomone, S., Robertson, I.H., Lynch, T., Balsters, J.H., Fearon, C., Marnane, M., Pender, N.P., Dockree, P.M.: The effects of immunologic brainstem encephalopathy on cognitive function following awakening from a progressive autoimmune coma. Neurocase 20(5), 569–580 (2014)

    Article  Google Scholar 

  71. Schnakers, C., Majerus 1, S., Laureys 2, S.: Bispectral analysis of electroencephalogram signals during recovery from coma: preliminary findings. Neuropsychol. Rehabilit. 15(3–4), 381–388 (2005)

  72. Silva, S., De Pasquale, F., Vuillaume, C., Riu, B., Loubinoux, I., Geeraerts, T., Seguin, T., Bounes, V., Fourcade, O., Demonet, J.F., et al.: Disruption of posteromedial large-scale neural communication predicts recovery from coma. Neurology 85(23), 2036–2044 (2015)

    Article  Google Scholar 

  73. Skarda, C.A., Freeman, W.J.: How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10(2), 161–173 (1987)

    Article  Google Scholar 

  74. Skarda, C.A., Freeman, W.J.: Chaos and the new science of the brain. Concepts Neurosci. 1(2), 275–285 (1990)

    Google Scholar 

  75. Tagliazucchi, E., Chialvo, D.R.: Brain complexity born out of criticality. In: AIP Conference Proceedings, vol. 1510, pp. 4–13. AIP (2013)

  76. Tagliazucchi, E., Chialvo, D.R., Siniatchkin, M., Amico, E., Brichant, J.F., Bonhomme, V., Noirhomme, Q., Laufs, H., Laureys, S.: Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics. J. R. Soc. Interface 13(114), 20151027 (2016)

    Article  Google Scholar 

  77. Tang, J., Ma, J., Yi, M., Xia, H., Yang, X.: Delay and diversity-induced synchronization transitions in a small-world neuronal network. Phys. Rev. E 83(4), 046207 (2011)

    Article  Google Scholar 

  78. Thibaut, A., Laureys, S.: Brain stimulation in patients with disorders of consciousness. Principles and Practice of Clinical Research 1(3) (2015)

  79. Tzovara, A., Rossetti, A.O., Spierer, L., Grivel, J., Murray, M.M., Oddo, M., De Lucia, M.: Progression of auditory discrimination based on neural decoding predicts awakening from coma. Brain 136(1), 81–89 (2012)

  80. Wang, Q., Zheng, Y., Ma, J.: Cooperative dynamics in neuronal networks. Chaos Solitons Fractals 56, 19–27 (2013)

    Article  Google Scholar 

  81. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13(2), 55–80 (1973)

    Article  MATH  Google Scholar 

  82. Wislowska, M., del Giudice, R., Schabus, M.: Searching for neuronal correlates of consciousness-what do we learn from coma and disorders of consciousness. Funct. Neurol. Rehabilit. Ergon. 4(2/3), 135 (2014)

    Google Scholar 

  83. Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8(1), 1349 (2018)

    Article  Google Scholar 

  84. Yeo, S.S., Chang, P.H., Jang, S.H.: The ascending reticular activating system from pontine reticular formation to the thalamus in the human brain. Front. Human Neurosci. 7, 416 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Sajad Jafari was supported by Iran NationalScience Foundation (No. 96000815).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriar Gharibzadeh.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamali, S., Gharibzadeh, S. & Jafari, S. A new look to coma from the viewpoint of nonlinear dynamics. Nonlinear Dyn 92, 2119–2131 (2018). https://doi.org/10.1007/s11071-018-4184-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4184-3

Keywords

Navigation