Skip to main content
Log in

A novel embedding method for characterization of low-dimensional nonlinear dynamical systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Characterization of dynamical systems remains a central challenge in real-world applications because, in most cases, governing equations of the systems cannot be obtained explicitly. Moreover, the behaviors of the systems are complex and possibly unpredictable, even when the system is deterministic. In this situation, nonlinear time series analysis provides an efficient tool for characterizing such dynamical systems. As one of the key techniques in nonlinear time series analysis, phase space reconstruction (PSR) can represent a univariate time series by a multidimensional phase space. Nevertheless, such representation relies on the conscientious selection of the time delay and embedding dimension. Although various algorithms have been developed to optimize these embedding parameters, there are still some limitations restricting their applicability, such as subjective effects, erratic results, and the consumption of time. Herein, we propose a novel Constant embedding parameters and Principal component analysis-based PSR (CPPSR) method, to characterize the low-dimensional (\( \le \)3) dynamical systems. The effectiveness and accuracy of the CPPSR method are numerically verified on various dynamical systems. The numerical results demonstrate that the CPPSR method can produce reconstructed attractors with precise correlation dimension and the largest Lyapunov exponent. The comparison with conventional and Hankel matrix-based PSR methods shows the superiority of the CPPSR method, demonstrating greater accuracy, higher efficiency, and stronger reliability. Moreover, the CPPSR method shows a high potential for the detection of singularity in applications such as structural health monitoring and abnormality diagnosis in ECG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Albers, D.J., Hripcsak, G.: Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series. Chaos Solitons Fractals 45(6), 853–860 (2012)

    Article  Google Scholar 

  2. Bro, R., Acar, E., Kolda, T.G.: Resolving the sign ambiguity in the singular value decomposition. J. Chemom. A J. Chemom. Soc. 22(2), 135–140 (2008)

    Google Scholar 

  3. Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Phys. D Nonlinear Phenom. 20(2–3), 217–236 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Broomhead, D.S., King, G.P.: On the qualitative analysis of experimental dynamical systems. Nonlinear Phenom. Chaos 113, 114 (1986)

    Google Scholar 

  5. Brunton, S.L., Brunton, B.W., Proctor, J.L., Kaiser, E., Kutz, J.N.: Chaos as an intermittently forced linear system. Nat. Commun. 8, 1–9 (2017)

    Article  Google Scholar 

  6. Cai, W.D., Qin, Y.Q., Yang, B.R.: Selection of delay time window and delay time in phase space reconstruction. In: 2007 International Conference on Computational Intelligence and Security (CIS 2007), pp. 526–530. IEEE (2007)

  7. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D Nonlinear Phenom. 110(1–2), 43–50 (1997)

    Article  MATH  Google Scholar 

  8. Case Western Reserve University Bearing Data Center: https://csegroups.case.edu/bearingdatacenter/home. Accessed: 2020-08-06

  9. Cellucci, C.J., Albano, A.M., Rapp, P.E.: Comparative study of embedding methods. Phys. Rev. E 67(6), 066210 (2003)

    Article  MathSciNet  Google Scholar 

  10. Dakos, V., Scheffer, M., van Nes, E.H., Brovkin, V., Petoukhov, V., Held, H.: Slowing down as an early warning signal for abrupt climate change. Proc. Natl. Acad. Sci. 105(38), 14308–14312 (2008)

    Article  Google Scholar 

  11. Deliyski, D.D., Shaw, H.S., Evans, M.K.: Influence of sampling rate on accuracy and reliability of acoustic voice analysis. Logop. Phoniatr. Vocol. 30(2), 55–62 (2005)

    Article  Google Scholar 

  12. Durdu, A., Uyaroğlu, Y.: The shortest synchronization time with optimal fractional order value using a novel chaotic attractor based on secure communication. Chaos Solitons Fractals 104, 98–106 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feeny, B.F., Liang, J.W.: Phase-space reconstructions and stick-slip. Nonlinear Dyn. 13(1), 39–57 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghafari, S.H., Golnaraghi, F., Ismail, F.: Effect of localized faults on chaotic vibration of rolling element bearings. Nonlinear Dyn. 53(4), 287–301 (2008)

    Article  MATH  Google Scholar 

  16. Gibson, J.F., Doyne Farmer, J., Casdagli, M., Eubank, S.: An analytic approach to practical state space reconstruction. Phys. D Nonlinear Phenom. 57(1–2), 1–30 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D Nonlinear Phenom. 9(1–2), 189–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harman, H.H.: Modern Factor Analysis. University of Chicago press, Chicago (1976)

    MATH  Google Scholar 

  20. Holzfuss, J., Mayer-Kress, G.: An Approach to Error-Estimation in the Application of Dimension Algorithms. Dimensions and Entropies in Chaotic Systems, pp. 114–122. Springer, Berlin (1986)

    Google Scholar 

  21. Huke, J.P., Broomhead, D.S.: Embedding theorems for non-uniformly sampled dynamical systems. Nonlinearity 20(9), 2205 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, A.H., Huang, X.C., Zhang, Z.H., Li, J., Zhang, Z.Y., Hua, H.X.: Mutual information algorithms. Mech. Syst. Signal Process. 24(8), 2947–2960 (2010)

    Article  Google Scholar 

  23. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis, vol. 5. Prentice hall Upper Saddle River, New Jersey (2002)

    MATH  Google Scholar 

  24. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Juang, J.N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guidance Control Dyn. 8(5), 620–627 (1985)

    Article  MATH  Google Scholar 

  26. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, vol. 7. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  27. Kennel, M.B., Brown, R., Abarbanel, H.D.: Determining embedding dimensions for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3303–3411 (1992)

    Article  Google Scholar 

  28. Kim, H., Eykholt, R., Salas, J.D.: Nonlinear dynamics, delay times, and embedding windows. Phys. D Nonlinear Phenom. 127(1), 48–60 (1999)

    Article  MATH  Google Scholar 

  29. Kugiumtzis, D.: State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length. Phys. D Nonlinear Phenom. 95(1), 13–28 (1996)

    Article  MATH  Google Scholar 

  30. Kugiumtzis, D.: Assessing different norms in nonlinear analysis of noisy time series. Phys. D Nonlinear Phenom. 105(1), 62–78 (1997)

    Article  Google Scholar 

  31. Lenton, T.M.: Early warning of climate tipping points. Nat. Clim. Change 1(4), 201–209 (2011)

    Article  Google Scholar 

  32. Li, Y., Song, Y., Li, C.: Selection of parameters for phase space reconstruction of chaotic time series. In: 2010 IEEE 5th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), pp. 30–33. IEEE (2010)

  33. Liebert, W., Schuster, H.G.: Proper choice of the time delay for the analysis of chaotic time series. Phys. Lett. A 142(2–3), 107–111 (1989)

    Article  MathSciNet  Google Scholar 

  34. Ma, H.G., Han, C.Z.: Selection of embedding dimension and delay time in phase space reconstruction. Front. Electr. Electron. Eng. China 1(1), 111–114 (2006)

    Article  Google Scholar 

  35. Martinerie, J.M., Albano, A.M., Mees, A.I., Rapp, P.E.: Mutual information, strange attractors, and the optimal estimation of dimension. Phys. Rev. A 45(10), 7058–7064 (1992)

    Article  Google Scholar 

  36. Mees, A.I., Rapp, P.E., Jennings, L.S.: Singular-value decomposition and embedding dimension. Phys. Rev. A 36(1), 340 (1987)

    Article  Google Scholar 

  37. Nichols, J.M., Nichols, J.D.: Attractor reconstruction for non-linear systems: a methodological note. Math. Biosci. 171(1), 21–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nichols, J.M., Trickey, S.T., Todd, M.D., Virgin, L.N.: Structural health monitoring through chaotic interrogation. Meccanica 38(2), 239–250 (2003)

    Article  MATH  Google Scholar 

  39. Otani, M., Jones, A.J.: Automated embedding and the creep phenomenon in chaotic time series (2000). http://users.cs.cf.ac.uk/Antonia.J.Jones/UnpublishedPapers/Creep.pdf

  40. Packard, N.H., Crutchfeld, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45(9), 712–716 (1980)

    Article  Google Scholar 

  41. Palit, S.K., Mukherjee, S., Banerjee, S., Ariffin, M.R.K., Bhattacharya, D.K.: Some Time-Delay Finding Measures and Attractor Reconstruction. Springer International Publishing, Berlin (2015)

    Book  Google Scholar 

  42. Parzygnat, W.J., Yih-Hsing, P.: Resonance phenomena in the nonlinear vibration of plates governed by Duffing’s equation. Int. J. Eng. Sci. 16(12), 999–1017 (1978)

    Article  Google Scholar 

  43. PhysioBank, ATM: Physionet. https://archive.physionet.org/cgi-bin/atm/ATM. Accessed: 2020-08-06

  44. Pourmahmood Aghababa, M., Abdollahi Sharif, J.: Chaos and complexity in mine grade distribution series detected by nonlinear approaches. Complexity 21(S2), 355–369 (2016)

    Article  MathSciNet  Google Scholar 

  45. Ragulskis, M., Lukoseviciute, K.: Non-uniform attractor embedding for time series forecasting by fuzzy inference systems. Neurocomputing 72(10–12), 2618–2626 (2009)

    Article  Google Scholar 

  46. Rapp, P.E.: Chaos in the neurosciences: cautionary tales from the frontier. Biologist 40(2), 89–94 (1993)

    Google Scholar 

  47. Ribeiro, P.: The second harmonic and the validity of Duffing’s equation for vibration of beams with large displacements. Comput. Struct. 79(1), 107–117 (2001)

    Article  Google Scholar 

  48. Ryue, J., White, P.R.: The detection of cracks in beams using chaotic excitations. J. Sound Vib. 307(3–5), 627–638 (2007)

    Article  Google Scholar 

  49. Shekatkar, S.M., Kotriwar, Y., Harikrishnan, K.P., Ambika, G.: Detecting abnormality in heart dynamics from multifractal analysis of ECG signals. Sci. Rep. 7(1), 15127 (2017)

    Article  Google Scholar 

  50. Strozzi, F., Zaldivar, J.M., Zbilut, J.P.: Application of nonlinear time series analysis techniques to high-frequency currency exchange data. Phys. A Stat. Mech. Its Appl. 312(3), 520–538 (2002)

    Article  MATH  Google Scholar 

  51. Sugihara, G., May, R., Ye, H., Hsieh, C.H., Deyle, E., Fogarty, M., Munch, S.: Detecting causality in complex ecosystems. Science 338(6106), 496–500 (2012)

    Article  MATH  Google Scholar 

  52. Sutani, T., Bessho, K.: A period-doubling bifurcation and a chaotic attractor observed by solving circuit equations from a magnetic frequency tripler with series-connected reactors. IEEJ Trans. Ind. Appl. 115(7), 936–941 (1995)

    Article  Google Scholar 

  53. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.S. (eds.) Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  54. Tao, M., Poskuviene, K., Alkayem, N.F., Cao, M., Ragulskis, M.: Permutation entropy based on non-uniform embedding. Entropy 20(8), 612 (2018)

    Article  Google Scholar 

  55. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.D.: Testing for nonlinearity in time series: the method of surrogate data. Phys. D 58(1–4), 77–94 (1992)

    Article  MATH  Google Scholar 

  56. Thomas, R.D., Moses, N.C., Semple, E.A., Strang, A.J.: An efficient algorithm for the computation of average mutual information: validation and implementation in Matlab. J. Math. Psychol. 61, 45–59 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Todd, M.D., Erickson, K., Chang, L., Lee, K., Nichols, J.M.: Using chaotic interrogation and attractor nonlinear cross-prediction error to detect fastener preload loss in an aluminum frame. Chaos Interdiscip. J. Nonlinear Sci. 14(2), 387–399 (2004)

    Article  Google Scholar 

  58. Todd, M.D., Nichols, J.M., Pecora, L.M., Virgin, L.N.: Vibration-based damage assessment utilizing state space geometry changes: local attractor variance ratio. Smart Mater. Struct. 10(5), 1000 (2001)

    Article  Google Scholar 

  59. Trendafilova, I., Manoach, E.: Vibration-based damage detection in plates by using time series analysis. Mech. Syst. Signal Process. 22(5), 1092–1106 (2008)

    Article  Google Scholar 

  60. Vaidelys, M., Ziaukas, P., Ragulskis, M.: Competitively coupled maps for hiding secret visual information. Phys. A Stat. Mech. Its Appl. 443, 91–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wallot, S., Mønster, D.: Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in matlab. Front. Psychol. 9, 1679 (2018)

    Article  Google Scholar 

  62. Wang, Z., Qiao, P., Shi, B.: Application of soft-thresholding on the decomposed Lamb wave signals for damage detection of plate-like structures. Measurement 88, 417–427 (2016)

    Article  Google Scholar 

  63. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ye, H., Beamish, R.J., Glaser, S.M., Grant, S.C., Hsieh, C.H., Richards, L.J., Schnute, J.T., Sugihara, G.: Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proc. Natl. Acad. Sci. 112(13), E1569–E1576 (2015)

    Article  Google Scholar 

  65. Zarei, Amin: Complex dynamics in a 5-d hyper-chaotic attractor with four-wing, one equilibrium and multiple chaotic attractors. Nonlinear Dyn. 81(1–2), 585–605 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhang, S., Hu, Y., Bao, H., Li, X.: Parameters determination method of phase-space reconstruction based on differential entropy ratio and RBF neural network. J. Electron. (China) 31(1), 61–67 (2014)

    Article  Google Scholar 

  67. Zhang, S.Q., Jia, J., Gao, M., Han, X.: Study on the parameters determination for reconstructing phase-space in chaos time series. Acta Phys. Sin. 59(3), 1576–1582 (2010)

    Article  MATH  Google Scholar 

  68. Zhang, S.Q., Li, X.X., Zhang, L.G., Hu, Y.T., Li, L.: Delay time obtaining method using the maximum joint entropy on the basis of symbolic analysis. Acta Phys. Sin. 62(11), 110506 (2013)

    Article  Google Scholar 

  69. Zhang, X., Lv, M., Chen, H., Dai, B., Xu, Y.: Chaotic characteristics analysis of the sintering process system with unknown dynamic functions based on phase space reconstruction and chaotic invariables. Nonlinear Dyn. 93(2), 395–412 (2018)

    Article  MATH  Google Scholar 

  70. Zhou, T., Gao, S., Wang, J., Chu, C., Todo, Y., Tang, Z.: Financial time series prediction using a dendritic neuron model. Knowl. Based Syst. 105, 214–224 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the partial support provided by the scholarship from the China Scholarship Council (202006710014), the 2020 China-Central Eastern European Countries Education Project (202014), and the 17th Regular Session Personnel Exchange Program of Bulgaria-China Committee for Scientific and Technological Cooperation (KP-06KITAJ/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maosen Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Cao, M., Manoach, E. et al. A novel embedding method for characterization of low-dimensional nonlinear dynamical systems. Nonlinear Dyn 104, 125–148 (2021). https://doi.org/10.1007/s11071-021-06229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06229-1

Keywords

Navigation