Skip to main content
Log in

Wada index based on the weighted and truncated Shannon entropy

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Wada index based on the weighted and truncated Shannon entropy is presented in this paper. The proposed Wada index can detect if a given basin boundary is a Wada boundary. Moreover, the Wada index does represent the number and the distribution of different colors (attractors) in the two-dimensional phase space of initial conditions. The Wada index is based on the standard box counting algorithm, but computations in each box are based on the weighted and truncated Shannon entropy. That makes the algorithm for the computation of the Wada index conveniently applicable for different basins of attraction represented as color digital images. Computational experiments are used to demonstrate the advantages of the proposed index and compare it with other existing techniques and algorithms for the numerical analysis of Wada boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yoneyama, K.: Theory of continuous set of points (not finished). Tohoku Math. J. First Ser. 12, 43–158 (1917)

    Google Scholar 

  2. Kennedy, J., Yorke, J.A.: Basins of Wada. Phys. D 51, 213–225 (1991). https://doi.org/10.1016/0167-2789(91)90234-Z

    Article  MathSciNet  MATH  Google Scholar 

  3. Nusse, H.E., Yorke, J.A.: Wada basin boundaries and basin cells. Phys. D 90, 242–261 (1996). https://doi.org/10.1016/0167-2789(95)00249-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Ito, T.: The classification of Wada-type representations of braid groups. J. Pure Appl. Algebra 217, 1754–1763 (2013). https://doi.org/10.1016/j.jpaa.2012.12.010

    Article  MathSciNet  MATH  Google Scholar 

  5. Osipov, A.V., Serow, D.W.: Fractional densities for the Wada basins. Nonlinear Phen. Compl. Syst. 21, 389–394 (2018)

    MATH  Google Scholar 

  6. Zhang, Y.: Switching-induced Wada basin boundaries in the Henon map. Nonlinear Dyn. 73, 2221–2229 (2013). https://doi.org/10.1007/s11071-013-0936-2

    Article  MATH  Google Scholar 

  7. Zhang, Y., Luo, G.: Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map. Phys. Lett. A 377, 1274–1281 (2013). https://doi.org/10.1016/j.physleta.2013.03.027

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, Y., Zhang, H., Gao, W.: Multiple Wada basins with common boundaries in nonlinear driven oscillators. Nonlinear Dyn. 79, 2667–2674 (2015). https://doi.org/10.1007/s11071-014-1839-6

    Article  MathSciNet  Google Scholar 

  9. Koropecki, A., Le Calvez, P., Tal, F.A.: A triple boundary lemma for surface homeomorphisms. Proc. Am. Math. Soc. 147, 681–686 (2019). https://doi.org/10.1090/proc/14258

    Article  MathSciNet  MATH  Google Scholar 

  10. Boronski, J.P., Cinc, J., Liu, X.-C.: Prime ends dynamics in parametrised families of rotational attractors. J. Lond. Math. Soc. 102, 557–579 (2020). https://doi.org/10.1112/jlms.12328

    Article  MathSciNet  MATH  Google Scholar 

  11. Ziaukas, P., Ragulskis, M.: Fractal dimension and Wada measure revisited: no straightforward relationships in NDDS. Nonlinear Dyn. 88, 871–882 (2017). https://doi.org/10.1007/s11071-016-3281-4

    Article  MATH  Google Scholar 

  12. Daza, A., Wagemakers, A., Georgeot, B., Guéry-Odelin, D., Sanjuán, M.A.F.: Basin entropy: a new tool to analyze uncertainty in dynamical systems. Sci. Rep. 6, 3146 (2016). https://doi.org/10.1038/srep31416

    Article  MATH  Google Scholar 

  13. Daza, A., Wagemakers, A., Sanjuán, M.A.F.: Wada property in systems with delay. Commun. Nonlinear Sci. Numer. Simul. 43, 220–226 (2017). https://doi.org/10.1016/j.cnsns.2016.07.008

    Article  MathSciNet  MATH  Google Scholar 

  14. Levi, A., Sabuco, J., Small, M., Sanjuán, M.A.F.: From local uncertainty to global predictions: making predictions on fractal basins. PLoS One 13, e0194926 (2018). https://doi.org/10.1371/journal.pone.0194926

    Article  Google Scholar 

  15. Daza, A., Wagemakers, A., Sanjuán, M.A.F., Yorke, J.A.: Testing for basins of Wada. Sci. Rep. 5, 16579 (2015). https://doi.org/10.1038/srep16579

    Article  Google Scholar 

  16. Daza, A., Wagemakers, A., Sanjuán, M.A.F.: Ascertaining when a basin is Wada: the merging method. Sci. Rep. 08, 9954 (2018). https://doi.org/10.1038/s41598-018-28119-0

    Article  Google Scholar 

  17. Liu, X.-M., Jiang, J., Hong, L., Tang, D.: Studying the global bifurcation involving Wada boundary metamorphosis by a method of generalized cell mapping with sampling-adaptive interpolation. Int. J. Bifurcat. Chaos 28, 1830003 (2018). https://doi.org/10.1142/S0218127418300033

    Article  MathSciNet  MATH  Google Scholar 

  18. Wagemakers, A., Daza, A., Sanjuán, M.A.F.: The saddle-straddle method to test for Wada basins. Commun. Nonlinear Sci. Numer. Simul. 84, 105167 (2020). https://doi.org/10.1016/j.cnsns.2020.105167

    Article  MathSciNet  MATH  Google Scholar 

  19. Aguirre, J., Viana, R., Sanjuán, M.A.F.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333–386 (2009). https://doi.org/10.1103/RevModPhys.81.333

    Article  Google Scholar 

  20. Wagemakers, A., Daza, A., Sanjuán, M.A.F.: How to detect Wada basins. Discrete Contin. Dyn. Syst. Ser. B 26, 717–739 (2021). https://doi.org/10.3934/dcdsb.2020330

    Article  MathSciNet  Google Scholar 

  21. Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156, 636–638 (1967). https://doi.org/10.1126/science.156.3775.636

    Article  Google Scholar 

  22. Straffin, P.: Newton’s method and fractal patterns. In: P. Straffin (ed.) Applications of Calculus (vol. 3 of Resources for Calculus Collection, MAA Notes vol. 29). Mathematical Association of America, Washingon, DC (1993)

  23. Gilbert, W.J.: Generalizations of Newton’s method. Fractals 09, 251–262 (2001). https://doi.org/10.1142/S0218348X01000737

    Article  MathSciNet  MATH  Google Scholar 

  24. Baker, G., Blackburn, J.: The Pendulum: A Case Study in Physics. Oxford University Press, New York (2005)

    MATH  Google Scholar 

  25. Nusse, H.E., Yorke, J.A.: Dynamics: Numerical Explorations. Springer Verlag, New York (1998)

    Book  Google Scholar 

  26. May, R.M.: Simple mathematical models with very complicated dynamics. In: Hunt, B.R., Li, T.Y., Kennedy, J.A., Nusse, H.E. (eds.) The Theory of Chaotic Attractors. Oxford University Press, New York (2004)

    Google Scholar 

  27. Lu, G., Landauskas, M., Ragulskis, M.: Control of divergence in an extended invertible Logistic map. Int. J. Bifurcat. Chaos 28, 1850129 (2018). https://doi.org/10.1142/S0218127418501298

    Article  MathSciNet  MATH  Google Scholar 

  28. Aguirre, J., Vallejo, J.C., Sanjuán, M.A.F.: Wada basins and chaotic invariant sets in the Hénon-Heiles system. Phys. Rev. E 64, 066208 (2001). https://doi.org/10.1103/PhysRevE.64.066208

    Article  Google Scholar 

  29. Hansen, M., da Costa, D.R., Caldas, I.L., Leonel, E.D.: Statistical properties for an open oval billiard: an investigation of the escaping basins. Chaos Solitons Fractals 106, 355–362 (2018). https://doi.org/10.1016/j.chaos.2017.11.036

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Financial support from the Key Project of Natural Science Foundation of China (No. 61833005), the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERDF) under Projects No. FIS2016-76883-P and No. PID2019-105554GB-I00 is acknowledged. The research was also supported by the Research and Innovation Fund of Kaunas University of Technology (No. PP59/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minvydas Ragulskis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saunoriene, L., Ragulskis, M., Cao, J. et al. Wada index based on the weighted and truncated Shannon entropy. Nonlinear Dyn 104, 739–751 (2021). https://doi.org/10.1007/s11071-021-06261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06261-1

Keywords

Navigation