Skip to main content
Log in

Generalized coupled Fokas–Lenells equation: modulation instability, conservation laws, and interaction solutions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the modulation instability, conservation laws, and interaction solutions of the generalized coupled Fokas–Lenells equation. Based on the theory of linear stability analysis, distribution pattern of modulation instability gain G in the (Kk) frequency plane is depicted, and the constraints for the existence of rogue waves are derived. Subsequently, we construct the infinitely many conservation laws for the generalized coupled Fokas–Lenells equation from the Riccati-type formulas of the Lax pair. In addition, the compact determinant expressions of the N-order localized wave solutions are given via generalized Darboux transformation, including higher-order rogue waves and interaction solutions among rogue waves with bright-dark solitons or breathers. These solutions are parameter controllable: \((m_i,n_i)\) and \((\alpha ,\beta )\) control the structure and ridge deflection of solution, respectively, while the value of |d| controls the strength of interaction to realize energy exchange. Especially, when \(d=0\), the interaction solutions degenerate into the corresponding order of rogue waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Zakharov, V.E., Ostrovsky, L.A.: Modulation instability: the beginning. Phys. D Nonlinear Phenom. 238, 540–548 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water Part 1. Theory. J. Fluid Mech. 27, 417–430 (1967)

    Article  MATH  Google Scholar 

  3. Bespalov, V.I., Talanov, V.I.: Filamentary structure of light beams in nonlinear liquids. J. Exp. Theor. Phys. 3, 471–476 (1966)

    Google Scholar 

  4. Bonnefoy, F., Tikan, A., Copie, F., et al.: From modulational instability to focusing dam breaks in water waves. Phys. Rev. Fluids 5, 34802 (2020)

    Article  Google Scholar 

  5. Nguyen, J.H.V., Luo, D., Hulet, R.G.: Formation of matter-wave soliton trains by modulational instability. Science 356, 422–426 (2017)

    Article  Google Scholar 

  6. Taniuti, T., Washimi, H.: Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma. Phys. Rev. Lett. 21, 209–212 (1968)

    Article  Google Scholar 

  7. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang, B., Chen, Y.: Dynamics of high-order solitons in the nonlocal nonlinear Schrödinger equations. Nonlinear Dyn. 94, 489–502 (2018)

    Article  MATH  Google Scholar 

  9. Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733–1741 (2020)

    Article  Google Scholar 

  10. Yue, Y.F., Huang, L.L., Chen, Y.: Localized waves and interaction solutions to an extended (3+1)-dimensional Jimbo-Miwa equation. Appl. Math. Lett. 89, 70–77 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  Google Scholar 

  12. Chen, J.C., Chen, L.Y., Feng, B.F., Maruno, K.: High-order rogue waves of a long-wave-short-wave model of Newell type. Phys. Rev. E 100, 052216 (2019)

    Article  Google Scholar 

  13. Huang, L.L., Chen, Y.: Localized excitations and interactional solutions for the reduced Maxwell-Bloch equations. Commun. Nonlinear Sci. Numer. Simulat. 67, 237–252 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yue, Y.F., Huang, L.L., Chen, Y.: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 89, 105284 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  MATH  Google Scholar 

  16. Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: How to excite a rogue wave. Phys. Rev. A 80, 043818 (2009)

    Article  Google Scholar 

  17. Fokas, A.S.: On a class of physically important integrable equations. Phys. D Nonlinear Phenom. 87, 145–150 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lenells, J.: Exactly solvable model for nonlinear pulse propagation in optical fibers. Stud. Appl. Math. 123, 215–232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mckean, H.P.: The Liouville correspondence between the Korteweg-de Vries and the Camassa-Holm hierarchies. Comm. Pure Appl. Math. 56, 998–1015 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Agrawal, G.P.: Nonlinear fiber optics, 4th edn. Academic Press, San Diego (2007)

    MATH  Google Scholar 

  21. Lenells, J., Fokas, A.S.: On a novel integrable generalization of the nonlinear Schrödinger equation. Nonlinearity 22, 11–27 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, S.H., Song, L.Y.: Peregrine solitons and algebraic soliton pairs in Kerr media considering space-time correction. Phys. Lett. A 378, 1228–1232 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, J.S., Xu, S.W., Porsezian, K.: Rogue waves of the Fokas–Lenells equation. J. Phys. Soc. Jpn. 81, 124007 (2012)

    Article  Google Scholar 

  24. Lenells, J.: Dressing for a novel integrable generalization of the nonlinear Schrödinger equation. J. Nonlinear Sci. 20, 709–722 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Matsuno, Y.: A direct method of solution for the Fokas-Lenells derivative nonlinear Schrödinger equation: II. Dark soliton solutions. J. Phys. A Math. Theor. 45, 475202 (2012)

    Article  MATH  Google Scholar 

  26. Triki, H., Wazwaz, A.M.: Combined optical solitary waves of the Fokas–Lenells equation. Wave Random Complex 27, 587–593 (2017)

    Article  MathSciNet  Google Scholar 

  27. Xu, J., Fan, E.G.: Long-time asymptotics for the Fokas–Lenells equation with decaying initial value problem: without solitons. J. Differ. Equ. 259, 1098–1148 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Deift, P.A., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Ann. Math. 137, 295–368 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, B., Chen, J.C., Yang, J.K.: Rogue waves in the generalized derivative nonlinear Schrödinger equations. J. Nonlinear Sci. 30, 3027–3056 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, X.Y., Zhou, Q., Biswas, A., et al.: The similarities and differences of different plane solitons controlled by (3+1)Cdimensional coupled variable coefficient system. J. Adv. Res. 24, 167–173 (2020)

    Article  Google Scholar 

  31. Dai, C.Q., Wang, Y.Y., Zhang, J.F.: Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials. Nonlinear Dyn. 102, 379–391 (2020)

    Article  Google Scholar 

  32. Cao, Q.H., Dai, C.Q.: Symmetric and Anti-symmetric solitons of the fractional second- and third-Order nonlinear Schrödinger equation. Chin. Phys. Lett. 38, 090501 (2021)

    Article  Google Scholar 

  33. Fang, Y., Wu, G.Z., Wang, Y.Y., Dai, C.Q.: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. 105, 603–616 (2021)

    Article  Google Scholar 

  34. Guo, B.L., Ling, L.M.: Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation. J. Math. Phys. 53, 073506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Morris, H.C., Dodd, R.K.: The two component derivative nonlinear Schrödinger equation. Phys. Scr. 20, 505–508 (1979)

    Article  MATH  Google Scholar 

  36. Hu, B.B., Xia, T.C.: The coupled Fokas–Lenells equations by a Riemann-Hilbert approach. arXiv:1711.03861, (2017)

  37. Zhang, Y., Yang, J.W., Chow, K.W., Wu, C.F.: Solitons, breathers and rogue waves for the coupled Fokas–Lenells system via Darboux transformation. Nonlinear Anal. Real World Appl. 33, 237–252 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ye, Y.L., Zhou, Y., Chen, S.H., et al.: General rogue wave solutions of the coupled Fokas–Lenells equations and non-recursive Darboux transformation. Proc. R. Soc. A 475, 20180806 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, T., Chen, Y.: Semirational solutions to the coupled Fokas–Lenells equations. Nonlinear Dyn. 95, 87–99 (2019)

    Article  MATH  Google Scholar 

  40. Zhang, M.X., He, S.L., Lv, S.Q.: A vector Fokas–Lenells system from the coupled nonlinear Schrödinger equations. J. Nonlinear Math. Phys. 22, 144–154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ling, L.M., Feng, B.F., Zhu, Z.N.: General soliton solutions to a coupled Fokas–Lenells equation. Nonlinear Anal. Real World Appl. 40, 185–214 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Biswas, A., Yildirim, Y., Yasar, E., et al.: Optical solitons with differential group delay for coupled Fokas–Lenells equation using two integration schemes. Optik 165, 74–86 (2018)

    Article  Google Scholar 

  43. Wang, X., Wei, J., Wang, L., Zhang, J.L.: Baseband modulation instability, rogue waves and state transitions in a deformed Fokas–Lenells equation. Nonlinear Dyn. 97, 343–353 (2019)

    Article  MATH  Google Scholar 

  44. Xu, T., He, G.L.: The coupled derivative nonlinear Schrödinger equation: conservation laws, modulation instability and semirational solutions. Nonlinear Dyn. 100, 2823–2837 (2020)

    Article  Google Scholar 

  45. Chen, S.H., Pan, C.C., Grelu, P., Baronio, F., Akhmediev, N.: Fundamental peregrine solitons of ultrastrong amplitude enhancement through self-steepening in vector nonlinear systems. Phys. Rev. Lett. 124, 113901 (2020)

    Article  MathSciNet  Google Scholar 

  46. Wang, M.M., Chen, Y.: Dynamic behaviors of mixed localized solutions for the three-component coupled Fokas–Lenells system. Nonlinear Dyn. 98, 1781–1794 (2019)

    Article  MATH  Google Scholar 

  47. Wang, B.H., Wang, Y.Y., Dai, C.Q., Chen, Y.X.: Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas–Lenells equation. Alex. Eng. J. 59, 4699–4707 (2020)

    Article  Google Scholar 

  48. Yang, J.W., Zhang, Y.: Higher-order rogue wave solutions of a general coupled nonlinear Fokas–Lenells system. Nonlinear Dyn. 93, 585–597 (2018)

    Article  MATH  Google Scholar 

  49. Miura, R.M., Gardner, C.S., Kruskal, M.D.: Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9, 1204–1209 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  50. Konno, K., Sanuki, H., Ichikawa, Y.H.: Conservation laws of nonlinear-evolution equations. Prog. Theor. Phys. 52, 886–889 (1974)

    Article  Google Scholar 

  51. Scott, A.C., Chu, F.Y.F., Mclaughlin, D.W.: The soliton: a new concept in applied science. Proc. IEEE 61, 1443–1483 (1973)

    Article  MathSciNet  Google Scholar 

  52. Wadati, M., Sanuki, H., Konno, K.: Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Prog. Theor. Phys. 53, 419–436 (1975)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to Professor Yong Chen for his valuable comments. The project is supported by the National Natural Science Foundation of China (No. 12005027), Postdoctoral Research Foundation of China (No. 2020M673116), and Natural Science Foundation of Chongqing (No. cstc2020jcyj-bshX0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Huang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests in this work.

Ethical Statement

The authors declare that they comply with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Y., Huang, L. Generalized coupled Fokas–Lenells equation: modulation instability, conservation laws, and interaction solutions. Nonlinear Dyn 107, 2753–2771 (2022). https://doi.org/10.1007/s11071-021-07123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07123-6

Keywords

Navigation